These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 9410955)

  • 1. [Myofibroblastosis--importance of transformation of renal cells into myofibroblasts during the renal fibrosis process].
    Imai E; Moriyama T
    Nihon Naika Gakkai Zasshi; 1997 Aug; 86(8):1470-4. PubMed ID: 9410955
    [No Abstract]   [Full Text] [Related]  

  • 2. [Current view on mediators role in pathogenesis of renal interstitial fibrosis (review)].
    Ratner MIa
    Ter Arkh; 1997; 69(12):87-8. PubMed ID: 9503546
    [No Abstract]   [Full Text] [Related]  

  • 3. Myofibroblasts and the progression of experimental glomerulonephritis.
    Zhang G; Moorhead PJ; el Nahas AM
    Exp Nephrol; 1995; 3(5):308-18. PubMed ID: 7583053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis.
    Surendran K; Schiavi S; Hruska KA
    J Am Soc Nephrol; 2005 Aug; 16(8):2373-84. PubMed ID: 15944336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro.
    Baxter RM; Crowell TP; George JA; Getman ME; Gardner H
    Matrix Biol; 2007 Jan; 26(1):20-9. PubMed ID: 17055234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mobilization of bone marrow cells does not ameliorate renal fibrosis.
    Stokman G; Leemans JC; Stroo I; Hoedemaeker I; Claessen N; Teske GJ; Weening JJ; Florquin S
    Nephrol Dial Transplant; 2008 Feb; 23(2):483-91. PubMed ID: 17989101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatocyte growth factor attenuates renal fibrosis through TGF-β1 suppression by apoptosis of myofibroblasts.
    Iekushi K; Taniyama Y; Azuma J; Sanada F; Kusunoki H; Yokoi T; Koibuchi N; Okayama K; Rakugi H; Morishita R
    J Hypertens; 2010 Dec; 28(12):2454-61. PubMed ID: 20842048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of cell plasticity in progression and regression of renal fibrosis].
    Dussaule JC; Guerrot D; Huby AC; Boffa JJ; Chatziantoniou C
    Bull Acad Natl Med; 2009 Dec; 193(9):1993-2003; discussion 2003-4. PubMed ID: 20666013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous urokinase lacks antifibrotic activity during progressive renal injury.
    Yamaguchi I; Lopez-Guisa JM; Cai X; Collins SJ; Okamura DM; Eddy AA
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F12-9. PubMed ID: 17356128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease.
    Kopp JB; Factor VM; Mozes M; Nagy P; Sanderson N; Böttinger EP; Klotman PE; Thorgeirsson SS
    Lab Invest; 1996 Jun; 74(6):991-1003. PubMed ID: 8667617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological intervention in renal fibrosis and vascular sclerosis.
    Becker GJ; Perkovic V; Hewitson TD
    J Nephrol; 2001; 14(5):332-9. PubMed ID: 11730265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Renal changes in rats and mice caused by total extracts of water and residue obtained from a herd with endemic nephropathy].
    Bordás E; Bretter E; Kosztin P
    Arch Roum Pathol Exp Microbiol; 1980; 39(1):63-8. PubMed ID: 7406679
    [No Abstract]   [Full Text] [Related]  

  • 13. CD4+ T cells: a potential player in renal fibrosis.
    Nikolic-Paterson DJ
    Kidney Int; 2010 Aug; 78(4):333-5. PubMed ID: 20671733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myofibroblasts in experimental hydronephrosis.
    Diamond JR; van Goor H; Ding G; Engelmyer E
    Am J Pathol; 1995 Jan; 146(1):121-9. PubMed ID: 7856721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneously occuring renal diseases in wild rhesus monkeys.
    Kaur J; Chakravarti RN; Chugh KS; Chhuttani PN
    J Pathol Bacteriol; 1968 Jan; 95(1):31-6. PubMed ID: 5689368
    [No Abstract]   [Full Text] [Related]  

  • 16. The aging kidney: structural changes.
    Pannarale G; Carbone R; Del Mastro G; Gallo C; Gattullo V; Natalicchio L; Navarra A; Tedesco A
    J Nephrol; 2010; 23 Suppl 15():S37-40. PubMed ID: 20872369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iatrogenic renal disease as revealed by renal biopsy.
    Jao W
    Semin Diagn Pathol; 1988 Feb; 5(1):63-79. PubMed ID: 3281203
    [No Abstract]   [Full Text] [Related]  

  • 18. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy.
    Ina K; Kitamura H; Tatsukawa S; Takayama T; Fujikura Y; Shimada T
    Med Electron Microsc; 2002 Jun; 35(2):87-95. PubMed ID: 12181650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal fibrosis: insight from proteomics in animal models and human disease.
    Klein J; Kavvadas P; Prakoura N; Karagianni F; Schanstra JP; Bascands JL; Charonis A
    Proteomics; 2011 Feb; 11(4):805-15. PubMed ID: 21229585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy.
    Yang J; Liu Y
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F349-57. PubMed ID: 12529273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.