These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 9412484)

  • 1. Potassium channel distribution, clustering, and function in remyelinating rat axons.
    Rasband MN; Trimmer JS; Schwarz TL; Levinson SR; Ellisman MH; Schachner M; Shrager P
    J Neurosci; 1998 Jan; 18(1):36-47. PubMed ID: 9412484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K+ channel distribution and clustering in developing and hypomyelinated axons of the optic nerve.
    Rasband MN; Trimmer JS; Peles E; Levinson SR; Shrager P
    J Neurocytol; 1999; 28(4-5):319-31. PubMed ID: 10739574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remyelination of dorsal column axons by endogenous Schwann cells restores the normal pattern of Nav1.6 and Kv1.2 at nodes of Ranvier.
    Black JA; Waxman SG; Smith KJ
    Brain; 2006 May; 129(Pt 5):1319-29. PubMed ID: 16537565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential distribution of closely related potassium channels in rat Schwann cells.
    Mi H; Deerinck TJ; Ellisman MH; Schwarz TL
    J Neurosci; 1995 May; 15(5 Pt 2):3761-74. PubMed ID: 7751944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internodal specializations of myelinated axons in the central nervous system.
    Arroyo EJ; Xu T; Poliak S; Watson M; Peles E; Scherer SS
    Cell Tissue Res; 2001 Jul; 305(1):53-66. PubMed ID: 11512672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering of Na+ channels and node of Ranvier formation in remyelinating axons.
    Dugandzija-Novaković S; Koszowski AG; Levinson SR; Shrager P
    J Neurosci; 1995 Jan; 15(1 Pt 2):492-503. PubMed ID: 7823157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes.
    Rhodes KJ; Strassle BW; Monaghan MM; Bekele-Arcuri Z; Matos MF; Trimmer JS
    J Neurosci; 1997 Nov; 17(21):8246-58. PubMed ID: 9334400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kv3.1b is a novel component of CNS nodes.
    Devaux J; Alcaraz G; Grinspan J; Bennett V; Joho R; Crest M; Scherer SS
    J Neurosci; 2003 Jun; 23(11):4509-18. PubMed ID: 12805291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myelinating Schwann cells determine the internodal localization of Kv1.1, Kv1.2, Kvbeta2, and Caspr.
    Arroyo EJ; Xu YT; Zhou L; Messing A; Peles E; Chiu SY; Scherer SS
    J Neurocytol; 1999; 28(4-5):333-47. PubMed ID: 10739575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic channels and signal conduction in single remyelinating frog nerve fibres.
    Shrager P
    J Physiol; 1988 Oct; 404():695-712. PubMed ID: 2473201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury.
    Nashmi R; Jones OT; Fehlings MG
    Eur J Neurosci; 2000 Feb; 12(2):491-506. PubMed ID: 10712629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of juxtaparanodes in myelinating DRG culture: Differential clustering of the Kv1/Caspr2 complex and scaffolding protein 4.1B.
    Hivert B; Pinatel D; Labasque M; Tricaud N; Goutebroze L; Faivre-Sarrailh C
    Glia; 2016 May; 64(5):840-52. PubMed ID: 26840208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered ion channels in an animal model of Charcot-Marie-Tooth disease type IA.
    Devaux JJ; Scherer SS
    J Neurosci; 2005 Feb; 25(6):1470-80. PubMed ID: 15703401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit composition and novel localization of K+ channels in spinal cord.
    Rasband MN; Trimmer JS
    J Comp Neurol; 2001 Jan; 429(1):166-76. PubMed ID: 11086297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-activated K+ channels localized in the nodal region of myelinated axons of Xenopus.
    Koh DS; Jonas P; Vogel W
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):183-97. PubMed ID: 7799220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic dysmyelination alters the molecular architecture of the nodal region.
    Arroyo EJ; Xu T; Grinspan J; Lambert S; Levinson SR; Brophy PJ; Peles E; Scherer SS
    J Neurosci; 2002 Mar; 22(5):1726-37. PubMed ID: 11880502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute demyelination disrupts the molecular organization of peripheral nervous system nodes.
    Arroyo EJ; Sirkowski EE; Chitale R; Scherer SS
    J Comp Neurol; 2004 Nov; 479(4):424-34. PubMed ID: 15514980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats.
    Brown AA; Xu T; Arroyo EJ; Levinson SR; Brophy PJ; Peles E; Scherer SS
    J Neurosci Res; 2001 Jul; 65(2):139-49. PubMed ID: 11438983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells.
    Hirono M; Ogawa Y; Misono K; Zollinger DR; Trimmer JS; Rasband MN; Misonou H
    J Neurosci; 2015 May; 35(18):7082-94. PubMed ID: 25948259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mouse model of Schwartz-Jampel syndrome reveals myelinating Schwann cell dysfunction with persistent axonal depolarization in vitro and distal peripheral nerve hyperexcitability when perlecan is lacking.
    Bangratz M; Sarrazin N; Devaux J; Zambroni D; Echaniz-Laguna A; René F; Boërio D; Davoine CS; Fontaine B; Feltri ML; Benoit E; Nicole S
    Am J Pathol; 2012 May; 180(5):2040-55. PubMed ID: 22449950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.