BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9413144)

  • 1. Glassy state and thermal inactivation of invertase and lactase in dried amorphous matrices.
    Schebor C; Burin L; Buera MP; Aguilera JM; Chirife J
    Biotechnol Prog; 1997; 13(6):857-63. PubMed ID: 9413144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes.
    Rossi S; Buera MP; Moreno S; Chirife J
    Biotechnol Prog; 1997; 13(5):609-16. PubMed ID: 9336981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effects of trehalose and cations on the thermal resistance of beta-galactosidase in freeze-dried systems.
    Mazzobre MF; Del Pilar Buera M
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):337-44. PubMed ID: 10594371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invertase storage stability and sucrose hydrolysis in solids as affected by water activity and glass transition.
    Chen YH; Aull JL; Bell LN
    J Agric Food Chem; 1999 Feb; 47(2):504-9. PubMed ID: 10563924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization.
    Sun WQ; Davidson P
    Biochim Biophys Acta; 1998 Sep; 1425(1):235-44. PubMed ID: 9813347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of carbohydrate-protein matrices for nutrient delivery.
    Zhou Y; Roos YH
    J Food Sci; 2011 May; 76(4):E368-76. PubMed ID: 22417357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glass transition and water effects on sucrose inversion by invertase in a lactose-sucrose system.
    Kouassi K; Roos YH
    J Agric Food Chem; 2000 Jun; 48(6):2461-6. PubMed ID: 10888568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Mono-, Di-, and Tri-Saccharides on the Stability and Crystallization of Amorphous Sucrose.
    Thorat AA; Forny L; Meunier V; Taylor LS; Mauer LJ
    J Food Sci; 2018 Nov; 83(11):2827-2839. PubMed ID: 30320406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization inhibition of an amorphous sucrose system using raffinose.
    Leinen KM; Labuza TP
    J Zhejiang Univ Sci B; 2006 Feb; 7(2):85-9. PubMed ID: 16421962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods.
    Traffano-Schiffo MV; Castro-Giraldez M; Fito PJ; Santagapita PR
    Food Res Int; 2017 Oct; 100(Pt 1):296-303. PubMed ID: 28873691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices.
    Lodato P; Se govia de Huergo M; Buera MP
    Appl Microbiol Biotechnol; 1999 Aug; 52(2):215-20. PubMed ID: 10499261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.
    Drake AC; Lee Y; Burgess EM; Karlsson JOM; Eroglu A; Higgins AZ
    PLoS One; 2018; 13(1):e0190713. PubMed ID: 29304068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invertase, maltase, lactase, and peroxidase activities in duodenum of BB rats.
    Courtois P; Meuris S; Sener A; Malaisse WJ; Scott FW
    Endocrine; 2002 Dec; 19(3):293-300. PubMed ID: 12624429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling between chemical reactivity and structural relaxation in pharmaceutical glasses.
    Shamblin SL; Hancock BC; Pikal MJ
    Pharm Res; 2006 Oct; 23(10):2254-68. PubMed ID: 16941232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody.
    Duddu SP; Dal Monte PR
    Pharm Res; 1997 May; 14(5):591-5. PubMed ID: 9165528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of additives on the stability of Humicola lanuginosa lipase during freeze-drying and storage in the dried solid.
    Kreilgaard L; Frokjaer S; Flink JM; Randolph TW; Carpenter JF
    J Pharm Sci; 1999 Mar; 88(3):281-90. PubMed ID: 10052984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glass fragility and the stability of pharmaceutical preparations--excipient selection.
    Hatley RH
    Pharm Dev Technol; 1997 Aug; 2(3):257-64. PubMed ID: 9552453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg.
    Davidson P; Sun WQ
    Pharm Res; 2001 Apr; 18(4):474-9. PubMed ID: 11451034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of intestinal permeability: enzymatic determination of urinary mannitol, raffinose, sucrose and lactose on Hitachi analyzer.
    Hessels J; Snoeyink EJ; Platenkamp AJ; Voortman G; Steggink J; Eidhof HH
    Clin Chem Lab Med; 2003 Jan; 41(1):33-8. PubMed ID: 12636047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of molecular weight of polyvinylpyrrolidone on the glass transition and crystallization of co-lyophilized sucrose.
    Zeng XM; Martin GP; Marriott C
    Int J Pharm; 2001 May; 218(1-2):63-73. PubMed ID: 11337150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.