These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9413835)

  • 21. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.
    Khanna R; Li Q; Sun L; Collins TJ; Stanley EF
    Neuroscience; 2006 Jul; 140(4):1201-8. PubMed ID: 16757118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Neurotransmitters, calcium signalling and neuronal communication].
    Eguiagaray JG; Egea J; Bravo-Cordero JJ; García AG
    Neurocirugia (Astur); 2004 Apr; 15(2):109-18. PubMed ID: 15159788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurotransmitter release.
    Matthews G
    Annu Rev Neurosci; 1996; 19():219-33. PubMed ID: 8833442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How can exocytosis account for the actual properties of miniature synaptic signals?
    Vautrin J; Barker JL
    Synapse; 1995 Feb; 19(2):144-9. PubMed ID: 7725243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotransmitter release.
    Zimmermann H
    FEBS Lett; 1990 Aug; 268(2):394-9. PubMed ID: 1974523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The synaptic vesicle and its targets.
    Volknandt W
    Neuroscience; 1995 Jan; 64(2):277-300. PubMed ID: 7700521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Exocytosis as the mechanism for neural communication. A view from chromaffin cells].
    Camacho M; Montesinos MS; Machado JD; Borges R
    Rev Neurol; 2003 Feb 15-28; 36(4):355-60. PubMed ID: 12599135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis.
    Man KN; Imig C; Walter AM; Pinheiro PS; Stevens DR; Rettig J; Sørensen JB; Cooper BH; Brose N; Wojcik SM
    Elife; 2015 Nov; 4():. PubMed ID: 26575293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The kinetics of quantal transmitter release from retinal amacrine cells.
    Borges S; Gleason E; Turelli M; Wilson M
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6896-900. PubMed ID: 7624339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission.
    Sabeva N; Cho RW; Vasin A; Gonzalez A; Littleton JT; Bykhovskaia M
    J Neurosci; 2017 Jan; 37(2):383-396. PubMed ID: 28077717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstitution of calcium-mediated exocytosis of dense-core vesicles.
    Kreutzberger AJB; Kiessling V; Liang B; Seelheim P; Jakhanwal S; Jahn R; Castle JD; Tamm LK
    Sci Adv; 2017 Jul; 3(7):e1603208. PubMed ID: 28776026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exocytosis in excitable cells: a conserved molecular machinery from yeast to neuron.
    Lledo PM
    Eur J Endocrinol; 1997 Jul; 137(1):1-9. PubMed ID: 9242191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function.
    Kasai H
    Trends Neurosci; 1999 Feb; 22(2):88-93. PubMed ID: 10092049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis.
    Park Y; Kim KT
    Cell Signal; 2009 Oct; 21(10):1465-70. PubMed ID: 19249357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The molecular mechanisms of quantum mediator secretion in the synapse].
    Zefirov AL; Cheranov SIu
    Usp Fiziol Nauk; 2000; 31(3):3-22. PubMed ID: 11042895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of synaptic vesicle exocytosis.
    Lin RC; Scheller RH
    Annu Rev Cell Dev Biol; 2000; 16():19-49. PubMed ID: 11031229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis.
    Zhang X; Kim-Miller MJ; Fukuda M; Kowalchyk JA; Martin TF
    Neuron; 2002 May; 34(4):599-611. PubMed ID: 12062043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight in the exocytotic process in chromaffin cells: regulation by trimeric and monomeric G proteins.
    Vitale N; Gasman S; Caumont AS; Gensse M; Galas MC; Chasserot-Golaz S; Bader MF
    Biochimie; 2000 Apr; 82(4):365-73. PubMed ID: 10865124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study.
    Shahrezaei V; Delaney KR
    Biophys J; 2004 Oct; 87(4):2352-64. PubMed ID: 15454435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter.
    Wojcik SM; Brose N
    Neuron; 2007 Jul; 55(1):11-24. PubMed ID: 17610814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.