BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9415063)

  • 1. Comparative toxicity of alloxan, N-alkylalloxans and ninhydrin to isolated pancreatic islets in vitro.
    Jörns A; Munday R; Tiedge M; Lenzen S
    J Endocrinol; 1997 Nov; 155(2):283-93. PubMed ID: 9415063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan.
    Elsner M; Tiedge M; Guldbakke B; Munday R; Lenzen S
    Diabetologia; 2002 Nov; 45(11):1542-9. PubMed ID: 12436338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between triketone structure, generation of reactive oxygen species, and selective toxicity of the diabetogenic agent alloxan.
    Elsner M; Gurgul-Convey E; Lenzen S
    Antioxid Redox Signal; 2008 Apr; 10(4):691-9. PubMed ID: 18177230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubidium uptake by mouse pancreatic islets exposed to 6-hydroxydopamine, ninhydrin, or other generators of hydroxyl radicals.
    Grankvist K; Sehlin J; Täljedal IB
    Acta Pharmacol Toxicol (Copenh); 1986 Mar; 58(3):175-81. PubMed ID: 3087136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alloxan and ninhydrin inhibition of hexokinase from pancreatic islets and tumoural insulin-secreting cells.
    Lenzen S; Freytag S; Panten U; Flatt PR; Bailey CJ
    Pharmacol Toxicol; 1990 Mar; 66(3):157-62. PubMed ID: 2185463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species differences in susceptibility of transplanted and cultured pancreatic islets to the beta-cell toxin alloxan.
    Tyrberg B; Andersson A; Borg LA
    Gen Comp Endocrinol; 2001 Jun; 122(3):238-51. PubMed ID: 11356036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on alloxan-induced pancreatic islets damage.
    Zhang HN; He JH; Yuan L; Lin ZB
    Life Sci; 2003 Sep; 73(18):2307-19. PubMed ID: 12941433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of superoxide dismutase, catalase, chelating agents, and free radical scavengers on the toxicity of alloxan to isolated pancreatic islets in vitro.
    Jörns A; Tiedge M; Lenzen S; Munday R
    Free Radic Biol Med; 1999 May; 26(9-10):1300-4. PubMed ID: 10381203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin.
    Lenzen S; Munday R
    Biochem Pharmacol; 1991 Sep; 42(7):1385-91. PubMed ID: 1930261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human islets in mixed islet grafts protect mouse pancreatic beta-cells from alloxan toxicity.
    Tyrberg B; Eizirik DL; Marklund SL; Olejnicka B; Madsen OD; Andersson A
    Pharmacol Toxicol; 1999 Dec; 85(6):269-75. PubMed ID: 10628902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between the physicochemical properties and the biological effects of alloxan and several N-alkyl substituted alloxan derivatives.
    Munday R; Ludwig K; Lenzen S
    J Endocrinol; 1993 Oct; 139(1):153-63. PubMed ID: 8254288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of diabetogenic compounds: cyproheptadine and alloxan.
    Chatterjee AK; Varayotha V; Fischer LJ
    Fundam Appl Toxicol; 1991 Jan; 16(1):188-97. PubMed ID: 2019344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting modes of action of D-glucose and 3-O-methyl-D-glucose as protectors of the rat pancreatic B-cell against alloxan.
    Malaisse-Lagae F; Sener A; Malaisse WJ
    Biochim Biophys Acta; 1983 Feb; 762(1):36-43. PubMed ID: 6338936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective role of superoxide dismutase against diabetogenic drugs.
    Gandy SE; Buse MG; Crouch RK
    J Clin Invest; 1982 Sep; 70(3):650-8. PubMed ID: 6213639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of B cells against the effect of alloxan.
    Abdel-Rahman MS; Elrakhawy FI; Iskander FA
    Toxicol Lett; 1992 Nov; 63(2):155-64. PubMed ID: 1455447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of alloxan and ninhydrin on mitochondrial Ca2+ transport.
    Lenzen S; Brünig H; Münster W
    Mol Cell Biochem; 1992 Dec; 118(2):141-51. PubMed ID: 1293509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of alloxan on the islets of Langerhans: inhibition of leucine metabolism and insulin secretion.
    Borg LA
    Biochim Biophys Acta; 1981 Oct; 677(2):257-62. PubMed ID: 7028133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury.
    Eizirik DL; Pipeleers DG; Ling Z; Welsh N; Hellerström C; Andersson A
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9253-6. PubMed ID: 7937750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase, catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro.
    Grankvist K; Marklund S; Sehlin J; Täljedal IB
    Biochem J; 1979 Jul; 182(1):17-25. PubMed ID: 40548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protective role of copper-zinc superoxide dismutase against alloxan-induced diabetes: morphological aspects.
    Thaete LG; Crouch RK; Buse MG; Spicer SS
    Diabetologia; 1985 Sep; 28(9):677-82. PubMed ID: 3905479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.