These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9415381)

  • 1. Evidence for several roles of dynein in pigment transport in melanophores.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1997; 38(4):397-409. PubMed ID: 9415381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of kinesin and cytoplasmic dynein in cultured melanophores from Atlantic cod, Gadus morhua.
    Nilsson H; Rutberg M; Wallin M
    Cell Motil Cytoskeleton; 1996; 33(3):183-96. PubMed ID: 8674138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule aster formation by dynein-dependent organelle transport.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1998; 41(3):254-63. PubMed ID: 9829779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational model of dynein-dependent self-organization of microtubule asters.
    Cytrynbaum EN; Rodionov V; Mogilner A
    J Cell Sci; 2004 Mar; 117(Pt 8):1381-97. PubMed ID: 14996905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro reconstitution of fish melanophore pigment aggregation.
    Nilsson H; Steffen W; Palazzo RE
    Cell Motil Cytoskeleton; 2001 Jan; 48(1):1-10. PubMed ID: 11124706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles.
    Kashina AS; Semenova IV; Ivanov PA; Potekhina ES; Zaliapin I; Rodionov VI
    Curr Biol; 2004 Oct; 14(20):1877-81. PubMed ID: 15498498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport.
    Reese EL; Haimo LT
    J Cell Biol; 2000 Oct; 151(1):155-66. PubMed ID: 11018061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyglutamylation of atlantic cod tubulin: immunochemical localization and possible role in pigment granule transport.
    Klotz A; Rutberg M; Denoulet P; Wallin M
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):263-73. PubMed ID: 10602255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo.
    Rubin KA; Starodubov SM; Onishchenko GE
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata.
    Granato FC; Tironi TS; Maciel FE; Rosa CE; Vargas MA; Nery LE
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):313-9. PubMed ID: 15313485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of pigment transport in melanophores.
    Tuma MC; Gelfand VI
    Pigment Cell Res; 1999 Oct; 12(5):283-94. PubMed ID: 10541038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-centring activity of cytoplasm.
    Rodionov VI; Borisy GG
    Nature; 1997 Mar; 386(6621):170-3. PubMed ID: 9062188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
    Levi V; Serpinskaya AS; Gratton E; Gelfand V
    Biophys J; 2006 Jan; 90(1):318-27. PubMed ID: 16214870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanoma dynein: evidence that dynein is a general "motor" for microtubule-associated cell motilities.
    Ogawa K; Hosoya H; Yokota E; Kobayashi T; Wakamatsu Y; Ozato K; Negishi S; Obika M
    Eur J Cell Biol; 1987 Feb; 43(1):3-9. PubMed ID: 2952503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions and regulation of molecular motors in Xenopus melanophores.
    Gross SP; Tuma MC; Deacon SW; Serpinskaya AS; Reilein AR; Gelfand VI
    J Cell Biol; 2002 Mar; 156(5):855-65. PubMed ID: 11864991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinesin is responsible for centrifugal movement of pigment granules in melanophores.
    Rodionov VI; Gyoeva FK; Gelfand VI
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4956-60. PubMed ID: 1828887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CK1 activates minus-end-directed transport of membrane organelles along microtubules.
    Ikeda K; Zhapparova O; Brodsky I; Semenova I; Tirnauer JS; Zaliapin I; Rodionov V
    Mol Biol Cell; 2011 Apr; 22(8):1321-9. PubMed ID: 21307338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores.
    Obika M; Turner WA; Negishi S; Menter DG; Tchen TT; Taylor JD
    J Exp Zool; 1978 Jul; 205(1):95-110. PubMed ID: 670923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.