These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9415438)

  • 1. Applying experimental data to protein fold prediction with the genetic algorithm.
    Dandekar T; Argos P
    Protein Eng; 1997 Aug; 10(8):877-93. PubMed ID: 9415438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions.
    Dandekar T; Argos P
    J Mol Biol; 1996 Mar; 256(3):645-60. PubMed ID: 8604145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding the main chain of small proteins with the genetic algorithm.
    Dandekar T; Argos P
    J Mol Biol; 1994 Feb; 236(3):844-61. PubMed ID: 8114098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nativelike topology assembly of small proteins using predicted restraints in Monte Carlo folding simulations.
    Ortiz AR; Kolinski A; Skolnick J
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):1020-5. PubMed ID: 9448278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a novel Hill-climbing genetic algorithm in protein folding simulations.
    Cooper LR; Corne DW; Crabbe MJ
    Comput Biol Chem; 2003 Dec; 27(6):575-80. PubMed ID: 14667785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model.
    Koga N; Takada S
    J Mol Biol; 2001 Oct; 313(1):171-80. PubMed ID: 11601854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials.
    Hubbard TJ; Park J
    Proteins; 1995 Nov; 23(3):398-402. PubMed ID: 8710832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio tertiary-fold prediction of helical and non-helical protein chains using a genetic algorithm.
    Dandekar T; Argos P
    Int J Biol Macromol; 1996 Feb; 18(1-2):1-4. PubMed ID: 8852746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Study on Single and Multiple Point Crossovers in a Genetic Algorithm for Coarse Protein Modeling.
    Dubey SPN; Kini NG; Balaji S; Kumar MS
    Crit Rev Biomed Eng; 2018; 46(2):163-171. PubMed ID: 30055532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR; Kolinski A; Skolnick J
    J Mol Biol; 1998 Mar; 277(2):419-48. PubMed ID: 9514747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple protein folding algorithm using a binary code and secondary structure constraints.
    Sun S; Thomas PD; Dill KA
    Protein Eng; 1995 Aug; 8(8):769-78. PubMed ID: 8637846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.
    Badasyan A; Liu Z; Chan HS
    J Mol Biol; 2008 Dec; 384(2):512-30. PubMed ID: 18823994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model.
    Kolinski A; Skolnick J
    Proteins; 1998 Sep; 32(4):475-94. PubMed ID: 9726417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GSAFold: a new application of GSA to protein structure prediction.
    Melo MC; Bernardi RC; Fernandes TV; Pascutti PG
    Proteins; 2012 Aug; 80(9):2305-10. PubMed ID: 22622959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic recognition of hydrophobic clusters and their correlation with protein folding units.
    Zehfus MH
    Protein Sci; 1995 Jun; 4(6):1188-202. PubMed ID: 7549883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins.
    Poznanski J; Sodano P; Suh SW; Lee JY; Ptak M; Vovelle F
    Eur J Biochem; 1999 Feb; 259(3):692-708. PubMed ID: 10092854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.