These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 9415440)
1. Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri. Voorhorst WG; Warner A; de Vos WM; Siezen RJ Protein Eng; 1997 Aug; 10(8):905-14. PubMed ID: 9415440 [TBL] [Abstract][Full Text] [Related]
2. Four Inserts within the Catalytic Domain Confer Extra Stability and Activity to Hyperthermostable Pyrolysin from Pyrococcus furiosus. Gao X; Zeng J; Yi H; Zhang F; Tang B; Tang XF Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003199 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus. Voorhorst WG; Eggen RI; Geerling AC; Platteeuw C; Siezen RJ; Vos WM J Biol Chem; 1996 Aug; 271(34):20426-31. PubMed ID: 8702780 [TBL] [Abstract][Full Text] [Related]
4. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Siezen RJ; de Vos WM; Leunissen JA; Dijkstra BW Protein Eng; 1991 Oct; 4(7):719-37. PubMed ID: 1798697 [TBL] [Abstract][Full Text] [Related]
5. Extremely thermostable glutamate dehydrogenase (GDH) from the freshwater archaeon Thermococcus waiotapuensis: cloning and comparison with two marine hyperthermophilic GDHs. Lee MK; González JM; Robb FT Extremophiles; 2002 Apr; 6(2):151-9. PubMed ID: 12013436 [TBL] [Abstract][Full Text] [Related]
6. Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Kannan Y; Koga Y; Inoue Y; Haruki M; Takagi M; Imanaka T; Morikawa M; Kanaya S Appl Environ Microbiol; 2001 Jun; 67(6):2445-52. PubMed ID: 11375149 [TBL] [Abstract][Full Text] [Related]
7. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site. Zeng J; Gao X; Dai Z; Tang B; Tang XF Appl Environ Microbiol; 2014 May; 80(9):2763-72. PubMed ID: 24561589 [TBL] [Abstract][Full Text] [Related]
8. The X-ray crystal structure of pyrrolidone-carboxylate peptidase from hyperthermophilic archaea Pyrococcus horikoshii. Sokabe M; Kawamura T; Sakai N; Yao M; Watanabe N; Tanaka I J Struct Funct Genomics; 2002; 2(3):145-54. PubMed ID: 12836705 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a phosphoribosyl anthranilate isomerase from the hyperthermophilic archaeon Thermococcus kodakaraensis. Perveen S; Rashid N; Papageorgiou AC Acta Crystallogr F Struct Biol Commun; 2016 Nov; 72(Pt 11):804-812. PubMed ID: 27827353 [TBL] [Abstract][Full Text] [Related]
10. Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-terminal propeptides. Foophow T; Tanaka S; Koga Y; Takano K; Kanaya S Protein Eng Des Sel; 2010 May; 23(5):347-55. PubMed ID: 20100702 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability. Foophow T; Tanaka S; Angkawidjaja C; Koga Y; Takano K; Kanaya S J Mol Biol; 2010 Jul; 400(4):865-77. PubMed ID: 20595040 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'. Braxton S; Wells JA Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. Rodriguez AC; Park HW; Mao C; Beese LS J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752 [TBL] [Abstract][Full Text] [Related]
14. Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. Siezen RJ; Creemers JW; Van de Ven WJ Eur J Biochem; 1994 Jun; 222(2):255-66. PubMed ID: 8020465 [TBL] [Abstract][Full Text] [Related]
15. Designing subtilisin BPN' to cleave substrates containing dibasic residues. Ballinger MD; Tom J; Wells JA Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915 [TBL] [Abstract][Full Text] [Related]
16. Overexpression and characterization of a carboxypeptidase from the hyperthermophilic archaeon Thermococcus sp. NA1. Lee HS; Kim YJ; Bae SS; Jeon JH; Lim JK; Kang SG; Lee JH Biosci Biotechnol Biochem; 2006 May; 70(5):1140-7. PubMed ID: 16717414 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of thermitase at 1.4 A resolution. Teplyakov AV; Kuranova IP; Harutyunyan EH; Vainshtein BK; Frömmel C; Höhne WE; Wilson KS J Mol Biol; 1990 Jul; 214(1):261-79. PubMed ID: 2196375 [TBL] [Abstract][Full Text] [Related]
18. The tRNA(guanine-26,N2-N2) methyltransferase (Trm1) from the hyperthermophilic archaeon Pyrococcus furiosus: cloning, sequencing of the gene and its expression in Escherichia coli. Constantinesco F; Benachenhou N; Motorin Y; Grosjean H Nucleic Acids Res; 1998 Aug; 26(16):3753-61. PubMed ID: 9685492 [TBL] [Abstract][Full Text] [Related]
19. Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Bezsudnova EY; Boyko KM; Polyakov KM; Dorovatovskiy PV; Stekhanova TN; Gumerov VM; Ravin NV; Skryabin KG; Kovalchuk MV; Popov VO Biochimie; 2012 Dec; 94(12):2628-38. PubMed ID: 22885278 [TBL] [Abstract][Full Text] [Related]
20. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1. Hwa KY; Subramani B; Shen ST; Lee YM Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]