BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9415442)

  • 1. Mutational analysis of Escherichia coli elongation factor Tu in search of a role for the N-terminal region.
    Mansilla F; Knudsen CR; Laurberg M; Clark BF
    Protein Eng; 1997 Aug; 10(8):927-34. PubMed ID: 9415442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Glu259 in Escherichia coli elongation factor Tu in ternary complex formation.
    Pedersen GN; Rattenborg T; Knudsen CR; Clark BF
    Protein Eng; 1998 Feb; 11(2):101-8. PubMed ID: 9605544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of Arg288 of Escherichia coli elongation factor Tu to translational functionality.
    Rattenborg T; Nautrup Pedersen G; Clark BF; Knudsen CR
    Eur J Biochem; 1997 Oct; 249(2):408-14. PubMed ID: 9370347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of Arg58 and Asp86 of elongation factor Tu from Escherichia coli: effects on the GTPase reaction and aminoacyl-tRNA binding.
    Knudsen CR; Clark BF
    Protein Eng; 1995 Dec; 8(12):1267-73. PubMed ID: 8869639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A.
    Anborgh PH; Parmeggiani A
    J Biol Chem; 1993 Nov; 268(33):24622-8. PubMed ID: 8227020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu.
    Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of Glu272 in elongation factor 1A of E. coli.
    Mansilla F; Knudsen CR; Clark BF
    FEBS Lett; 1998 Jun; 429(3):417-20. PubMed ID: 9662461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA.
    Nissen P; Thirup S; Kjeldgaard M; Nyborg J
    Structure; 1999 Feb; 7(2):143-56. PubMed ID: 10368282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands.
    Cetin R; Anborgh PH; Cool RH; Parmeggiani A
    Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8.
    Nock S; Grillenbeck N; Ahmadian MR; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1995 Nov; 234(1):132-9. PubMed ID: 8529632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of the conserved Gly94 and Gly126 in elongation factor Tu from Escherichia coli. Elucidation of their structural and functional roles.
    Knudsen CR; Kjaersgård IV; Wiborg O; Clark BF
    Eur J Biochem; 1995 Feb; 228(1):176-83. PubMed ID: 7883001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kirromycin drastically reduces the affinity of Escherichia coli elongation factor Tu for aminoacyl-tRNA.
    Abrahams JP; van Raaij MJ; Ott G; Kraal B; Bosch L
    Biochemistry; 1991 Jul; 30(27):6705-10. PubMed ID: 2065055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome.
    Rodnina MV; Fricke R; Kuhn L; Wintermeyer W
    EMBO J; 1995 Jun; 14(11):2613-9. PubMed ID: 7781613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of Thermus thermophilus EF-Tu: the substitution of threonine-62 by serine or alanine.
    Ahmadian MR; Kreutzer R; Blechschmidt B; Sprinzl M
    FEBS Lett; 1995 Dec; 377(2):253-7. PubMed ID: 8543062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.