These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9415735)

  • 1. Effects of transglottal pressure change on fundamental frequency of phonation: preliminary evaluation of the effect of intraoral pressure change.
    Tanaka K; Kitajima K; Kataoka H
    Folia Phoniatr Logop; 1997; 49(6):300-7. PubMed ID: 9415735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroglottographic evaluation of gender and vowel effects during modal and vocal fry phonation.
    Chen Y; Robb MP; Gilbert HR
    J Speech Lang Hear Res; 2002 Oct; 45(5):821-9. PubMed ID: 12381041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges.
    Kataoka K; Kitajima K
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between transglottal pressure and fundamental frequency of phonation, with effects of dehydration produced by atropine, in healthy volunteers.
    Tanaka K; Kitajima K; Tanaka H
    Ann Otol Rhinol Laryngol; 2001 Nov; 110(11):1066-71. PubMed ID: 11713920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of transglottal pressure on fundamental frequency of phonation: study with a rubber model.
    Kataoka H; Kitajima K; Owaki S
    Ann Otol Rhinol Laryngol; 2001 Jan; 110(1):56-62. PubMed ID: 11201810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents.
    Koenig LL; Fuchs S; Lucero JC
    J Acoust Soc Am; 2011 May; 129(5):3233-44. PubMed ID: 21568425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of onset and offset phonation threshold pressure in normal subjects.
    Plant RL; Freed GL; Plant RE
    J Acoust Soc Am; 2004 Dec; 116(6):3640-6. PubMed ID: 15658714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts.
    Robieux C; Galant C; Lagier A; Legou T; Giovanni A
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperfunctional Voice Disorder in Children With Attention Deficit Hyperactivity Disorder (ADHD). A Phenotypic Characteristic?
    Barona-Lleo L; Fernandez S
    J Voice; 2016 Jan; 30(1):114-9. PubMed ID: 25862604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voice Register in Mon: Acoustics and Electroglottography.
    Abramson AS; Tiede MK; Luangthongkum T
    Phonetica; 2015; 72(4):237-56. PubMed ID: 26636544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided technique for automatic determination of the relationship between transglottal pressure change and voice fundamental frequency.
    Deguchi S; Kawashima K; Washio S
    Ann Otol Rhinol Laryngol; 2008 Dec; 117(12):876-80. PubMed ID: 19140531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of transglottal pressure on vocal fundamental frequency changes with stiffness of vocal folds].
    Tanaka K; Kitajima K; Kataoka H; Kataoka K; Tanaka H
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Jan; 100(1):1-6. PubMed ID: 9038069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of effects of transglottal pressure change on fundamental frequency of phonation.
    Deguchi S; Matsuzaki Y; Ikeda T
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):128-34. PubMed ID: 17388237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of subglottal and intraoral pressure measurements during phonation.
    Hertegård S; Gauffin J; Lindestad PA
    J Voice; 1995 Jun; 9(2):149-55. PubMed ID: 7620537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immediate effects of 'voice massage' treatment on the speaking voice of healthy subjects.
    Laukkanen AM; Leppänen K; Tyrmi J; Vilkman E
    Folia Phoniatr Logop; 2005; 57(3):163-72. PubMed ID: 15914999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency, intensity, and target matching effects on photoglottographic measures of open quotient and speed quotient.
    Hanson DG; Gerratt BR; Berke GS
    J Speech Hear Res; 1990 Mar; 33(1):45-50. PubMed ID: 2314084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Vertical Glottal Duct Length on Intraglottal Pressures and Phonation Threshold Pressure in the Uniform Glottis.
    Li S; Scherer RC; Fulcher LP; Wang X; Qiu L; Wan M; Wang S
    J Voice; 2018 Jan; 32(1):8-22. PubMed ID: 28599995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.