These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 9415994)
1. Threshold parameters for a simple stochastic partnership model of sexually transmitted diseases formulated as a two-type CMJ process. Mode CJ IMA J Math Appl Med Biol; 1997 Dec; 14(4):251-60. PubMed ID: 9415994 [TBL] [Abstract][Full Text] [Related]
2. Interval estimates for epidemic thresholds in two-sex network models. Handcock MS; Jones JH Theor Popul Biol; 2006 Sep; 70(2):125-34. PubMed ID: 16714041 [TBL] [Abstract][Full Text] [Related]
3. Social networks: Sexual contacts and epidemic thresholds. Jones JH; Handcock MS Nature; 2003 Jun; 423(6940):605-6; discussion 606. PubMed ID: 12789329 [No Abstract] [Full Text] [Related]
4. A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. Bauch CT J Math Biol; 2002 Nov; 45(5):375-95. PubMed ID: 12424529 [TBL] [Abstract][Full Text] [Related]
5. Modelling sexually transmitted infections: the effect of partnership activity and number of partners on R0. Britton T; Nordvik MK; Liljeros F Theor Popul Biol; 2007 Nov; 72(3):389-99. PubMed ID: 17707873 [TBL] [Abstract][Full Text] [Related]
7. On some formulas in a partnership model from the perspective of a semi-Markov process. Mode CJ; Dietz K J Math Biol; 1994; 32(2):161-9. PubMed ID: 8145029 [TBL] [Abstract][Full Text] [Related]
8. A stochastic model for the spread of a sexually transmitted disease which results in a scale-free network. Reed WJ Math Biosci; 2006 May; 201(1-2):3-14. PubMed ID: 16466750 [TBL] [Abstract][Full Text] [Related]
9. Monogamous networks and the spread of sexually transmitted diseases. Eames KT; Keeling MJ Math Biosci; 2004 Jun; 189(2):115-30. PubMed ID: 15094315 [TBL] [Abstract][Full Text] [Related]
10. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model. Schurr JM; Fujimoto BS; Diaz R; Robinson BH J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047 [TBL] [Abstract][Full Text] [Related]
11. Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations. Zhang J; Jin Z; Chen Y Math Biosci; 2013 Apr; 242(2):143-52. PubMed ID: 23403371 [TBL] [Abstract][Full Text] [Related]
12. Branching process approach for epidemics in dynamic partnership network. Lashari AA; Trapman P J Math Biol; 2018 Jan; 76(1-2):265-294. PubMed ID: 28573467 [TBL] [Abstract][Full Text] [Related]
13. Analysis and simulation of a stochastic, discrete-individual model of STD transmission with partnership concurrency. Chick SE; Adams AL; Koopman JS Math Biosci; 2000 Jul; 166(1):45-68. PubMed ID: 10882799 [TBL] [Abstract][Full Text] [Related]
14. A sexually neutral discrete Markov model for given sum males + females. Tyvand PA; Thorvaldsen S Theor Popul Biol; 2007 Aug; 72(1):148-52. PubMed ID: 17296213 [TBL] [Abstract][Full Text] [Related]
15. Sexual partnership patterns as a behavioral risk factor for sexually transmitted diseases. Finer LB; Darroch JE; Singh S Fam Plann Perspect; 1999; 31(5):228-36. PubMed ID: 10723647 [TBL] [Abstract][Full Text] [Related]
16. Prevention strategies for sexually transmitted infections: importance of sexual network structure and epidemic phase. Ward H Sex Transm Infect; 2007 Aug; 83 Suppl 1():i43-49. PubMed ID: 17389716 [TBL] [Abstract][Full Text] [Related]
17. An illness-death model for the study of the carcinogenic process using survival/sacrifice data. Kodell RL; Nelson CJ Biometrics; 1980 Jun; 36(2):267-77. PubMed ID: 7407315 [TBL] [Abstract][Full Text] [Related]
18. A new design of stochastic partnership models for epidemics of sexually transmitted diseases with stages. Mode CJ; Sleeman CK Math Biosci; 1999 Mar; 156(1-2):95-122. PubMed ID: 10204389 [TBL] [Abstract][Full Text] [Related]
19. On the absorption probabilities and absorption times of finite homogeneous birth-death processes. Tan WY Biometrics; 1976 Dec; 32(4):745-52. PubMed ID: 1009223 [TBL] [Abstract][Full Text] [Related]
20. Going from bad to worse: a stochastic model of transitions in deficit accumulation, in relation to mortality. Mitnitski A; Bao L; Rockwood K Mech Ageing Dev; 2006 May; 127(5):490-3. PubMed ID: 16519921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]