BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9416330)

  • 1. Dependence of basal cerebral blood flow and cerebral vascular resistance in spontaneously hypertensive rats upon vasoconstrictor prostanoids.
    Oseka M; Koźniewska E
    Acta Neurochir Suppl; 1997; 70():228-30. PubMed ID: 9416330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebrovascular effects of nitric oxide manipulation in spontaneously hypertensive rats.
    Fouyas IP; Kelly PA; Ritchie IM; Whittle IR
    Br J Pharmacol; 1997 May; 121(1):49-56. PubMed ID: 9146886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine-induced endothelium-dependent contractions in the SHR aorta: the Janus face of prostacyclin.
    Gluais P; Lonchampt M; Morrow JD; Vanhoutte PM; Feletou M
    Br J Pharmacol; 2005 Nov; 146(6):834-45. PubMed ID: 16158068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral blood flow during inhibition of brain nitric oxide synthase activity in normal, hypertensive, and stroke-prone rats.
    Izuta M; Clavier N; Kirsch JR; Traystman RJ
    Stroke; 1995 Jun; 26(6):1079-85. PubMed ID: 7539167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of prostaglandins in regulation of cerebral blood flow during acute hypertension.
    Yang ST; Koong CW; Chen HI
    Chin J Physiol; 1997 Sep; 40(3):137-42. PubMed ID: 9434889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress induced by tert-butyl hydroperoxide causes vasoconstriction in the aorta from hypertensive and aged rats: role of cyclooxygenase-2 isoform.
    Garcia-Cohen EC; Marin J; Diez-Picazo LD; Baena AB; Salaices M; Rodriguez-Martinez MA
    J Pharmacol Exp Ther; 2000 Apr; 293(1):75-81. PubMed ID: 10734155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exaggerated renal vascular reactivity to angiotensin and thromboxane in young genetically hypertensive rats.
    Chatziantoniou C; Daniels FH; Arendshorst WJ
    Am J Physiol; 1990 Aug; 259(2 Pt 2):F372-82. PubMed ID: 2386211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial dysfunction augments myogenic arteriolar constriction in hypertension.
    Huang A; Sun D; Koller A
    Hypertension; 1993 Dec; 22(6):913-21. PubMed ID: 8244524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging quantification of regional cerebral blood flow and cerebrovascular reactivity to carbon dioxide in normotensive and hypertensive rats.
    Leoni RF; Paiva FF; Henning EC; Nascimento GC; Tannús A; de Araujo DB; Silva AC
    Neuroimage; 2011 Sep; 58(1):75-81. PubMed ID: 21708273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of prostanoids in the increased vascular responsiveness and delayed tachyphylaxis to serotonin in the kidney of spontaneously hypertensive rats.
    Tuncer M; Vanhoutte PM
    J Hypertens; 1991 Jul; 9(7):623-9. PubMed ID: 1653798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of mode of contraction on the mechanism of acetylcholine-mediated relaxation of coronary arteries from normotensive and spontaneously hypertensive rats.
    Bund SJ
    Clin Sci (Lond); 1998 Mar; 94(3):231-8. PubMed ID: 9616256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired nitric oxide- and prostaglandin-mediated responses to flow in resistance arteries of hypertensive rats.
    Matrougui K; Maclouf J; Lévy BI; Henrion D
    Hypertension; 1997 Oct; 30(4):942-7. PubMed ID: 9336397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of endothelin receptors in hypertensive resistance vessels.
    Montagnani M; Potenza MA; Rinaldi R; Mansi G; Nacci C; Serio M; Vulpis V; Pirrelli A; Mitolo-Chieppa D
    J Hypertens; 1999 Jan; 17(1):45-52. PubMed ID: 10100093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of prostaglandins in acetylcholine-induced contraction of aorta from spontaneously hypertensive and Wistar-Kyoto rats.
    Rapoport RM; Williams SP
    Hypertension; 1996 Jul; 28(1):64-75. PubMed ID: 8675266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin and thromboxane in genetically hypertensive rats: renal blood flow and receptor studies.
    Chatziantoniou C; Arendshorst WJ
    Am J Physiol; 1991 Aug; 261(2 Pt 2):F238-47. PubMed ID: 1831598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of prostaglandin H2-thromboxane A2 in responses of cerebral arterioles during chronic hypertension.
    Mayhan WG
    Am J Physiol; 1992 Feb; 262(2 Pt 2):H539-43. PubMed ID: 1539713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential role of cyclooxygenase-1 and -2 on renal vasoconstriction to α₁-adrenoceptor stimulation in normotensive and hypertensive rats.
    D'Abril Ruíz-Leyja E; Villalobos-Molina R; López-Guerrero JJ; Gallardo-Ortíz IA; Estrada-Soto SE; Ibarra-Barajas M
    Life Sci; 2013 Oct; 93(16):552-7. PubMed ID: 24012611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertension increases the participation of vasoconstrictor prostanoids from cyclooxygenase-2 in phenylephrine responses.
    Alvarez Y; Briones AM; Balfagón G; Alonso MJ; Salaices M
    J Hypertens; 2005 Apr; 23(4):767-77. PubMed ID: 15775781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. c-Src, ERK1/2 and Rho kinase mediate hydrogen peroxide-induced vascular contraction in hypertension: role of TXA2, NAD(P)H oxidase and mitochondria.
    García-Redondo AB; Briones AM; Martínez-Revelles S; Palao T; Vila L; Alonso MJ; Salaices M
    J Hypertens; 2015 Jan; 33(1):77-87. PubMed ID: 25380156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nitric oxide in the maintenance of resting cerebral blood flow during chronic hypertension.
    Yang ST
    Life Sci; 1996; 58(15):1231-8. PubMed ID: 8614276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.