BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9416805)

  • 1. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation.
    Czosnyka M; Piechnik S; Richards HK; Kirkpatrick P; Smielewski P; Pickard JD
    J Neurol Neurosurg Psychiatry; 1997 Dec; 63(6):721-31. PubMed ID: 9416805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indices for decreased cerebral blood flow control--a modelling study.
    Piechnik S; Czosnyka M; Smielewski P; Pickard JD
    Acta Neurochir Suppl; 1998; 71():269-71. PubMed ID: 9779204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison study of cerebral autoregulation assessed with transcranial Doppler and cortical laser Doppler flowmetry.
    Zweifel C; Czosnyka M; Lavinio A; Castellani G; Kim DJ; Carrera E; Pickard JD; Kirkpatrick PJ; Smielewski P
    Neurol Res; 2010 May; 32(4):425-8. PubMed ID: 19703359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation.
    Richards HK; Czosnyka M; Whitehouse H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():229-32. PubMed ID: 9779192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow.
    Lang EW; Lagopoulos J; Griffith J; Yip K; Yam A; Mudaliar Y; Mehdorn HM; Dorsch NW
    J Neurol Neurosurg Psychiatry; 2003 Aug; 74(8):1053-9. PubMed ID: 12876233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves.
    Ursino M; Di Giammarco P
    Ann Biomed Eng; 1991; 19(1):15-42. PubMed ID: 2035909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury.
    Figaji AA; Zwane E; Fieggen AG; Argent AC; Le Roux PD; Siesjo P; Peter JC
    J Neurosurg Pediatr; 2009 Nov; 4(5):420-8. PubMed ID: 19877773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model.
    Bergsneider M; Alwan AA; Falkson L; Rubinstein EH
    Acta Neurochir Suppl; 1998; 71():266-8. PubMed ID: 9779203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between the intracranial pressure-volume index and cerebral autoregulation.
    Lavinio A; Rasulo FA; De Peri E; Czosnyka M; Latronico N
    Intensive Care Med; 2009 Mar; 35(3):546-9. PubMed ID: 18850087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods.
    Brady KM; Lee JK; Kibler KK; Easley RB; Koehler RC; Shaffner DH
    Stroke; 2008 Sep; 39(9):2531-7. PubMed ID: 18669896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial Doppler ultrasonography in intensive care.
    Rasulo FA; De Peri E; Lavinio A
    Eur J Anaesthesiol Suppl; 2008; 42():167-73. PubMed ID: 18289437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transient moderate hyperventilation on dynamic cerebral autoregulation after severe head injury.
    Newell DW; Weber JP; Watson R; Aaslid R; Winn HR
    Neurosurgery; 1996 Jul; 39(1):35-43; discussion 43-4. PubMed ID: 8805138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired cerebral autoregulation in the newborn lamb during recovery from severe, prolonged hypoxia, combined with carotid artery and jugular vein ligation.
    Short BL; Walker LK; Traystman RJ
    Crit Care Med; 1994 Aug; 22(8):1262-8. PubMed ID: 8045146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is there a direct link between cerebrovascular activity and cerebrospinal fluid pressure-volume compensation?
    Haubrich C; Czosnyka Z; Lavinio A; Smielewski P; Diehl RR; Pickard JD; Czosnyka M
    Stroke; 2007 Oct; 38(10):2677-80. PubMed ID: 17702960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitation of cerebral blood flow by increased venous outflow resistance in elevated ICP.
    Zadka Y; Rosenthal G; Doron O; Barnea O
    J Appl Physiol (1985); 2024 Jan; 136(1):224-232. PubMed ID: 38059286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.
    Bragin DE; Statom GL; Yonas H; Dai X; Nemoto EM
    Crit Care Med; 2014 Dec; 42(12):2582-90. PubMed ID: 25289933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study.
    Lee JH; Kelly DF; Oertel M; McArthur DL; Glenn TC; Vespa P; Boscardin WJ; Martin NA
    J Neurosurg; 2001 Aug; 95(2):222-32. PubMed ID: 11780891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.