BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 9417117)

  • 1. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly.
    Lu Y; Xiong X; Helm A; Kimani K; Bragin A; Skach WR
    J Biol Chem; 1998 Jan; 273(1):568-76. PubMed ID: 9417117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperativity and flexibility of cystic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue.
    Carveth K; Buck T; Anthony V; Skach WR
    J Biol Chem; 2002 Oct; 277(42):39507-14. PubMed ID: 12186867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino-terminal assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences.
    Skach WR; Lingappa VR
    J Biol Chem; 1993 Nov; 268(31):23552-61. PubMed ID: 7901209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator.
    Tector M; Hartl FU
    EMBO J; 1999 Nov; 18(22):6290-8. PubMed ID: 10562541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
    Xiong X; Bragin A; Widdicombe JH; Cohn J; Skach WR
    J Clin Invest; 1997 Sep; 100(5):1079-88. PubMed ID: 9276724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of sequence determinants that direct different intracellular folding pathways for aquaporin-1 and aquaporin-4.
    Foster W; Helm A; Turnbull I; Gulati H; Yang B; Verkman AS; Skach WR
    J Biol Chem; 2000 Nov; 275(44):34157-65. PubMed ID: 10944517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane orientation and topogenesis of the third and fourth membrane-spanning regions of human P-glycoprotein (MDR1).
    Skach WR; Lingappa VR
    Cancer Res; 1994 Jun; 54(12):3202-9. PubMed ID: 7911395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of carboxyl-terminal domain translocation during prion protein biogenesis.
    De Fea KA; Nakahara DH; Calayag MC; Yost CS; Mirels LF; Prusiner SB; Lingappa VR
    J Biol Chem; 1994 Jun; 269(24):16810-20. PubMed ID: 7911469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane integration of the second transmembrane segment of band 3 requires a closely apposed preceding signal-anchor sequence.
    Ota K; Sakaguchi M; Hamasaki N; Mihara K
    J Biol Chem; 2000 Sep; 275(38):29743-8. PubMed ID: 10893228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane insertion, processing, and topology of cystic fibrosis transmembrane conductance regulator (CFTR) in microsomal membranes.
    Chen M; Zhang JT
    Mol Membr Biol; 1996; 13(1):33-40. PubMed ID: 9147660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal.
    Prince LS; Peter K; Hatton SR; Zaliauskiene L; Cotlin LF; Clancy JP; Marchase RB; Collawn JF
    J Biol Chem; 1999 Feb; 274(6):3602-9. PubMed ID: 9920908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between neighboring topogenic signals during membrane protein insertion into the ER.
    Monné M; Hessa T; Thissen L; von Heijne G
    FEBS J; 2005 Jan; 272(1):28-36. PubMed ID: 15634329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator.
    Skach WR
    Kidney Int; 2000 Mar; 57(3):825-31. PubMed ID: 10720935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator.
    Hu W; Howard M; Lukacs GL
    Biochem J; 2001 Mar; 354(Pt 3):561-72. PubMed ID: 11237860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2.
    Rosser MF; Grove DE; Chen L; Cyr DM
    Mol Biol Cell; 2008 Nov; 19(11):4570-9. PubMed ID: 18716059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions.
    Qian F; Liu L; Liu Z; Lu C
    Physiol Res; 2016 Jul; 65(3):505-15. PubMed ID: 27070741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of CFTR transmembrane span integration by disease-causing mutations.
    Patrick AE; Karamyshev AL; Millen L; Thomas PJ
    Mol Biol Cell; 2011 Dec; 22(23):4461-71. PubMed ID: 21998193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.