These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9417828)

  • 1. Conduction block in acute and chronic spinal cord injury: different dose-response characteristics for reversal by 4-aminopyridine.
    Shi R; Kelly TM; Blight AR
    Exp Neurol; 1997 Dec; 148(2):495-501. PubMed ID: 9417828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.
    McBride JM; Smith DT; Byrn SR; Borgens RB; Shi R
    Neuroscience; 2007 Aug; 148(1):44-52. PubMed ID: 17629412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction.
    Jensen JM; Shi R
    J Neurophysiol; 2003 Oct; 90(4):2334-40. PubMed ID: 12853442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose responses of three 4-aminopyridine derivatives on axonal conduction in spinal cord trauma.
    McBride JM; Smith DT; Byrn SR; Borgens RB; Shi R
    Eur J Pharm Sci; 2006 Feb; 27(2-3):237-42. PubMed ID: 16297607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter.
    Sun W; Smith D; Fu Y; Cheng JX; Bryn S; Borgens R; Shi R
    J Neurophysiol; 2010 Jan; 103(1):469-78. PubMed ID: 19923250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord.
    Shi R; Blight AR
    Neuroscience; 1997 Mar; 77(2):553-62. PubMed ID: 9472411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in pharmacological sensitivity of the spinal cord to potassium channel blockers following acute spinal cord injury.
    Fehlings MG; Nashmi R
    Brain Res; 1996 Oct; 736(1-2):135-45. PubMed ID: 8930318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrolein induces myelin damage in mammalian spinal cord.
    Shi Y; Sun W; McBride JJ; Cheng JX; Shi R
    J Neurochem; 2011 May; 117(3):554-64. PubMed ID: 21352229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord.
    Ashki N; Hayes KC; Bao F
    Neuroscience; 2008 Sep; 156(1):107-17. PubMed ID: 18662749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrolein-mediated conduction loss is partially restored by K⁺ channel blockers.
    Yan R; Page JC; Shi R
    J Neurophysiol; 2016 Feb; 115(2):701-10. PubMed ID: 26581866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathological changes of isolated spinal cord axons in response to mechanical stretch.
    Shi R; Pryor JD
    Neuroscience; 2002; 110(4):765-77. PubMed ID: 11934483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of novel 4-aminopyridine derivatives as potential treatments for neurological injury and disease.
    Smith DT; Shi R; Borgens RB; McBride JM; Jackson K; Byrn SR
    Eur J Med Chem; 2005 Sep; 40(9):908-17. PubMed ID: 16055230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure.
    Shi R; Blight AR
    J Neurophysiol; 1996 Sep; 76(3):1572-80. PubMed ID: 8890277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 4-aminopyridine on axonal conduction-block in chronic spinal cord injury.
    Blight AR
    Brain Res Bull; 1989 Jan; 22(1):47-52. PubMed ID: 2540887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute repair of crushed guinea pig spinal cord by polyethylene glycol.
    Shi R; Borgens RB
    J Neurophysiol; 1999 May; 81(5):2406-14. PubMed ID: 10322076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paranodal myelin damage after acute stretch in Guinea pig spinal cord.
    Sun W; Fu Y; Shi Y; Cheng JX; Cao P; Shi R
    J Neurotrauma; 2012 Feb; 29(3):611-9. PubMed ID: 21988176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional alterations of spinal cord axons in adult Long Evans Shaker (LES) dysmyelinated rats.
    Eftekharpour E; Karimi-Abdolrezaee S; Sinha K; Velumian AA; Kwiecien JM; Fehlings MG
    Exp Neurol; 2005 Jun; 193(2):334-49. PubMed ID: 15869936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.