These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 9417828)
41. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]
42. Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. Shi R; Whitebone J J Neurophysiol; 2006 Jun; 95(6):3384-90. PubMed ID: 16510778 [TBL] [Abstract][Full Text] [Related]
43. Conduction failures in rabbit saphenous nerve unmyelinated fibers. Zhu ZR; Tang XW; Wang WT; Ren W; Xing JL; Zhang JR; Duan JH; Wang YY; Jiao X; Hu SJ Neurosignals; 2009; 17(3):181-95. PubMed ID: 19295243 [TBL] [Abstract][Full Text] [Related]
45. Immediate consequences of spinal cord injury: possible role of potassium in axonal conduction block. Eidelberg E; Sullivan J; Brigham A Surg Neurol; 1975 Jun; 3(6):317-21. PubMed ID: 1162585 [TBL] [Abstract][Full Text] [Related]
46. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Guest JD; Hiester ED; Bunge RP Exp Neurol; 2005 Apr; 192(2):384-93. PubMed ID: 15755556 [TBL] [Abstract][Full Text] [Related]
47. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro. Taccola G; Nistri A Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841 [TBL] [Abstract][Full Text] [Related]
48. Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro. Taccola G; Nistri A Neuroscience; 2005; 132(4):1187-97. PubMed ID: 15857720 [TBL] [Abstract][Full Text] [Related]
49. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. Shi R; Borgens RB J Neurocytol; 2000 Sep; 29(9):633-43. PubMed ID: 11353287 [TBL] [Abstract][Full Text] [Related]
50. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Liang P; Jin LH; Liang T; Liu EZ; Zhao SG Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177 [TBL] [Abstract][Full Text] [Related]
51. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. LoPachin RM; Gaughan CL; Lehning EJ; Kaneko Y; Kelly TM; Blight A J Neurophysiol; 1999 Nov; 82(5):2143-53. PubMed ID: 10561394 [TBL] [Abstract][Full Text] [Related]
52. Role of TTX-sensitive and TTX-resistant sodium channels in Adelta- and C-fiber conduction and synaptic transmission. Pinto V; Derkach VA; Safronov BV J Neurophysiol; 2008 Feb; 99(2):617-28. PubMed ID: 18057109 [TBL] [Abstract][Full Text] [Related]
53. Nitric oxide reversibly impairs axonal conduction in Guinea pig spinal cord. Ashki N; Hayes KC; Shi R J Neurotrauma; 2006 Dec; 23(12):1779-93. PubMed ID: 17184188 [TBL] [Abstract][Full Text] [Related]
54. Preclinical trial of 4-aminopyridine in patients with chronic spinal cord injury. Hayes KC; Blight AR; Potter PJ; Allatt RD; Hsieh JT; Wolfe DL; Lam S; Hamilton JT Paraplegia; 1993 Apr; 31(4):216-24. PubMed ID: 8493036 [TBL] [Abstract][Full Text] [Related]
55. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. Lo AC; Saab CY; Black JA; Waxman SG J Neurophysiol; 2003 Nov; 90(5):3566-71. PubMed ID: 12904334 [TBL] [Abstract][Full Text] [Related]
56. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity. Li Y; Li X; Harvey PJ; Bennett DJ J Neurophysiol; 2004 Nov; 92(5):2694-703. PubMed ID: 15486423 [TBL] [Abstract][Full Text] [Related]
57. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. Cho Y; Shi R; Borgens RB J Exp Biol; 2010 May; 213(Pt 9):1513-20. PubMed ID: 20400636 [TBL] [Abstract][Full Text] [Related]
58. Recombinant human TNFalpha induces concentration-dependent and reversible alterations in the electrophysiological properties of axons in mammalian spinal cord. Davies AL; Hayes KC; Shi R J Neurotrauma; 2006 Aug; 23(8):1261-73. PubMed ID: 16928184 [TBL] [Abstract][Full Text] [Related]