These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 9417833)
1. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Wang X; Messing A; David S Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833 [TBL] [Abstract][Full Text] [Related]
2. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203 [TBL] [Abstract][Full Text] [Related]
3. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Lemons ML; Howland DR; Anderson DK Exp Neurol; 1999 Nov; 160(1):51-65. PubMed ID: 10630190 [TBL] [Abstract][Full Text] [Related]
4. Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth. Kuhlengel KR; Bunge MB; Bunge RP; Burton H J Comp Neurol; 1990 Mar; 293(1):74-91. PubMed ID: 1690226 [TBL] [Abstract][Full Text] [Related]
5. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. Ribotta MG; Menet V; Privat A Acta Neurochir Suppl; 2004; 89():87-92. PubMed ID: 15335106 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous regeneration of the corticospinal tract after transection in young rats: collagen type IV deposition and astrocytic scar in the lesion site are not the cause but the effect of failure of regeneration. Iseda T; Nishio T; Kawaguchi S; Kawasaki T; Wakisaka S J Comp Neurol; 2003 Sep; 464(3):343-55. PubMed ID: 12900928 [TBL] [Abstract][Full Text] [Related]
7. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord. Houlé JD; Reier PJ J Comp Neurol; 1988 Mar; 269(4):535-47. PubMed ID: 2453536 [TBL] [Abstract][Full Text] [Related]
8. Reorganization of the ependyma during axolotl spinal cord regeneration: changes in intermediate filament and fibronectin expression. O'Hara CM; Egar MW; Chernoff EA Dev Dyn; 1992 Feb; 193(2):103-15. PubMed ID: 1374657 [TBL] [Abstract][Full Text] [Related]
9. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Fry EJ; Chagnon MJ; López-Vales R; Tremblay ML; David S Glia; 2010 Mar; 58(4):423-33. PubMed ID: 19780196 [TBL] [Abstract][Full Text] [Related]
10. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Fitch MT; Silver J Exp Neurol; 1997 Dec; 148(2):587-603. PubMed ID: 9417835 [TBL] [Abstract][Full Text] [Related]
11. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Camand E; Morel MP; Faissner A; Sotelo C; Dusart I Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588 [TBL] [Abstract][Full Text] [Related]
12. Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar. Liesi P; Kauppila T Exp Neurol; 2002 Jan; 173(1):31-45. PubMed ID: 11771937 [TBL] [Abstract][Full Text] [Related]
13. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. Theriault E; Frankenstein UN; Hertzberg EL; Nagy JI J Comp Neurol; 1997 Jun; 382(2):199-214. PubMed ID: 9183689 [TBL] [Abstract][Full Text] [Related]
14. Extracellular matrix alterations, accelerated leukocyte infiltration and enhanced axonal sprouting after spinal cord hemisection in tenascin-C-deficient mice. Schreiber J; Schachner M; Schumacher U; Lorke DE Acta Histochem; 2013 Oct; 115(8):865-78. PubMed ID: 23701962 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration. Cohen I; Shani Y; Schwartz M J Comp Neurol; 1993 Aug; 334(3):431-43. PubMed ID: 8376626 [TBL] [Abstract][Full Text] [Related]
16. Changes in glial fibrillary acidic protein mRNA expression after corticospinal axotomy in the adult hamster. Kost-Mikucki SA; Oblinger MM J Neurosci Res; 1991 Feb; 28(2):182-91. PubMed ID: 2033647 [TBL] [Abstract][Full Text] [Related]
17. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration. Weidner N; Grill RJ; Tuszynski MH Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189 [TBL] [Abstract][Full Text] [Related]
18. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. Inman DM; Steward O J Comp Neurol; 2003 Aug; 462(4):431-49. PubMed ID: 12811811 [TBL] [Abstract][Full Text] [Related]
19. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system. Oudega M; Marani E J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147 [TBL] [Abstract][Full Text] [Related]
20. Regulation of chondroitin sulphate proteoglycan and reactive gliosis after spinal cord transection: effects of peripheral nerve graft and fibroblast growth factor 1. Lee MJ; Chen CJ; Huang WC; Huang MC; Chang WC; Kuo HS; Tsai MJ; Lin YL; Cheng H Neuropathol Appl Neurobiol; 2011 Oct; 37(6):585-99. PubMed ID: 21486314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]