BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 9417927)

  • 21. Chromatin domains and regulation of transcription.
    Razin SV; Iarovaia OV; Sjakste N; Sjakste T; Bagdoniene L; Rynditch AV; Eivazova ER; Lipinski M; Vassetzky YS
    J Mol Biol; 2007 Jun; 369(3):597-607. PubMed ID: 17466329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The chromatin unfolding domain of chromosomal protein HMG-14 targets the N-terminal tail of histone H3 in nucleosomes.
    Trieschmann L; Martin B; Bustin M
    Proc Natl Acad Sci U S A; 1998 May; 95(10):5468-73. PubMed ID: 9576905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly.
    Lusser A; Urwin DL; Kadonaga JT
    Nat Struct Mol Biol; 2005 Feb; 12(2):160-6. PubMed ID: 15643425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High mobility group protein 14 and 17 can prevent the close packing of nucleosomes by increasing the strength of protein contacts in the linker DNA.
    Tremethick DJ; Hyman L
    J Biol Chem; 1996 May; 271(20):12009-16. PubMed ID: 8662614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of interactions between nucleosome arrays mediated by specific core histone tail domains.
    Kan PY; Hayes JJ
    Methods; 2007 Mar; 41(3):278-85. PubMed ID: 17309837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.
    Thakar A; Gupta P; Ishibashi T; Finn R; Silva-Moreno B; Uchiyama S; Fukui K; Tomschik M; Ausio J; Zlatanova J
    Biochemistry; 2009 Nov; 48(46):10852-7. PubMed ID: 19856965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosome arrays reveal the two-start organization of the chromatin fiber.
    Dorigo B; Schalch T; Kulangara A; Duda S; Schroeder RR; Richmond TJ
    Science; 2004 Nov; 306(5701):1571-3. PubMed ID: 15567867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The FACT chromatin modulator: genetic and structure/function relationships.
    Singer RA; Johnston GC
    Biochem Cell Biol; 2004 Aug; 82(4):419-27. PubMed ID: 15284894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo.
    Fraser RM; Allan J; Simmen MW
    J Mol Biol; 2006 Dec; 364(4):582-98. PubMed ID: 17027853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I.
    Okuwaki M; Kato K; Shimahara H; Tate S; Nagata K
    Mol Cell Biol; 2005 Dec; 25(23):10639-51. PubMed ID: 16287874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleosomal anatomy--where are the histones?
    Pruss D; Hayes JJ; Wolffe AP
    Bioessays; 1995 Feb; 17(2):161-70. PubMed ID: 7748166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific acetylation of chromosomal protein HMG-17 by PCAF alters its interaction with nucleosomes.
    Herrera JE; Sakaguchi K; Bergel M; Trieschmann L; Nakatani Y; Bustin M
    Mol Cell Biol; 1999 May; 19(5):3466-73. PubMed ID: 10207070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone.
    Huynh VA; Robinson PJ; Rhodes D
    J Mol Biol; 2005 Feb; 345(5):957-68. PubMed ID: 15644197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin architecture.
    Woodcock CL
    Curr Opin Struct Biol; 2006 Apr; 16(2):213-20. PubMed ID: 16540311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting of high mobility group-14/-17 proteins in chromatin is independent of DNA sequence.
    Shirakawa H; Herrera JE; Bustin M; Postnikov Y
    J Biol Chem; 2000 Dec; 275(48):37937-44. PubMed ID: 10973947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of HMG14 with chromatin.
    Graziano V; Ramakrishnan V
    J Mol Biol; 1990 Aug; 214(4):897-910. PubMed ID: 2388273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modular structure of chromosomal proteins HMG-14 and HMG-17: definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain.
    Trieschmann L; Postnikov YV; Rickers A; Bustin M
    Mol Cell Biol; 1995 Dec; 15(12):6663-9. PubMed ID: 8524231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical analysis of chromatin structure and function using Drosophila embryo extracts.
    Blank TA; Sandaltzopoulos R; Becker PB
    Methods; 1997 May; 12(1):28-35. PubMed ID: 9169192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.