BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9418207)

  • 1. Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues.
    Wong FS; Elliott JC
    Scanning; 1997 Nov; 19(8):541-6. PubMed ID: 9418207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities.
    Roschger P; Plenk H; Klaushofer K; Eschberger J
    Scanning Microsc; 1995 Mar; 9(1):75-86; discussion 86-8. PubMed ID: 8553027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of mineral content and composition on graylevels in backscattered electron images of bone.
    Skedros JG; Bloebaum RD; Bachus KN; Boyce TM; Constantz B
    J Biomed Mater Res; 1993 Jan; 27(1):57-64. PubMed ID: 8420999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consistency in calibrated backscattered electron images of calcified tissues and minerals analyzed in multiple imaging sessions.
    Vajda EG; Skedros JG; Bloebaum RD
    Scanning Microsc; 1995 Sep; 9(3):741-53. PubMed ID: 9565522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.
    Howell PG; Boyde A
    Calcif Tissue Int; 2003 Jun; 72(6):745-9. PubMed ID: 14563004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standards for X-ray microanalysis of calcified structures.
    Lopez-Escamez JA; Campos A
    Scanning Microsc Suppl; 1994; 8():171-85. PubMed ID: 7638486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The meaning of graylevels in backscattered electron images of bone.
    Skedros JG; Bloebaum RD; Bachus KN; Boyce TM
    J Biomed Mater Res; 1993 Jan; 27(1):47-56. PubMed ID: 8380598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.
    Vajda EG; Skedros JG; Bloebaum RD
    Scanning; 1998 Oct; 20(7):527-35. PubMed ID: 9857528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral content changes in bone associated with damage induced by the electron beam.
    Bloebaum RD; Holmes JL; Skedros JG
    Scanning; 2005; 27(5):240-8. PubMed ID: 16268176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining mineral content variations in bone using backscattered electron imaging.
    Bloebaum RD; Skedros JG; Vajda EG; Bachus KN; Constantz BR
    Bone; 1997 May; 20(5):485-90. PubMed ID: 9145247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density.
    Nazarian A; Snyder BD; Zurakowski D; Müller R
    Bone; 2008 Aug; 43(2):302-311. PubMed ID: 18539557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of topography and specimen preparation on backscattered electron images of bone.
    Vajda EG; Humphrey S; Skedros JG; Bloebaum RD
    Scanning; 1999; 21(6):379-87. PubMed ID: 10654424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting computed tomography images into photon interaction coefficients by using stoichiometric calibration and parametric fit models.
    Shih CT; Wu J
    Med Phys; 2017 Feb; 44(2):510-521. PubMed ID: 28133756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of electron scattering in bone.
    Howell PG; Boyde A
    Bone; 1994; 15(3):285-91. PubMed ID: 8068449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
    Landis WJ
    Scan Electron Microsc; 1979; (2):555-70. PubMed ID: 524025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning Electron Microscopy of Bone.
    Boyde A
    Methods Mol Biol; 2019; 1914():571-616. PubMed ID: 30729487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlative light and backscattered electron microscopy of bone--Part I: Specimen preparation methods.
    Goldman HM; Kindsvater J; Bromage TG
    Scanning; 1999; 21(1):40-3. PubMed ID: 10070782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study.
    Kierdorf U; Kierdorf H; Boyde A
    J Anat; 2000 Jan; 196 ( Pt 1)(Pt 1):71-83. PubMed ID: 10697290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass determination of thin biological specimens using backscattered electrons. Application in quantitative X-ray microanalysis on an automated STEM system.
    Linders PW; Hagemann P
    Ultramicroscopy; 1983; 11(1):13-9. PubMed ID: 6612893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom.
    Deuerling JM; Rudy DJ; Niebur GL; Roeder RK
    Med Phys; 2010 Sep; 37(9):5138-45. PubMed ID: 20964233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.