These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 9418252)
1. Inhibition of metallo-beta-lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid. Payne DJ; Bateson JH; Gasson BC; Khushi T; Proctor D; Pearson SC; Reid R FEMS Microbiol Lett; 1997 Dec; 157(1):171-5. PubMed ID: 9418252 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives. Payne DJ; Bateson JH; Gasson BC; Proctor D; Khushi T; Farmer TH; Tolson DA; Bell D; Skett PW; Marshall AC; Reid R; Ghosez L; Combret Y; Marchand-Brynaert J Antimicrob Agents Chemother; 1997 Jan; 41(1):135-40. PubMed ID: 8980769 [TBL] [Abstract][Full Text] [Related]
3. Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Payne DJ; Hueso-Rodríguez JA; Boyd H; Concha NO; Janson CA; Gilpin M; Bateson JH; Cheever C; Niconovich NL; Pearson S; Rittenhouse S; Tew D; Díez E; Pérez P; De La Fuente J; Rees M; Rivera-Sagredo A Antimicrob Agents Chemother; 2002 Jun; 46(6):1880-6. PubMed ID: 12019104 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812 [TBL] [Abstract][Full Text] [Related]
5. Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases. Siemann S; Clarke AJ; Viswanatha T; Dmitrienko GI Biochemistry; 2003 Feb; 42(6):1673-83. PubMed ID: 12578382 [TBL] [Abstract][Full Text] [Related]
6. Complete ¹H, ¹⁵N, and ¹³C resonance assignments of Bacillus cereus metallo-β-lactamase and its complex with the inhibitor R-thiomandelic acid. Karsisiotis AI; Damblon C; Roberts GC Biomol NMR Assign; 2014 Oct; 8(2):313-8. PubMed ID: 23838816 [TBL] [Abstract][Full Text] [Related]
7. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910 [TBL] [Abstract][Full Text] [Related]
8. Metal content and localization during turnover in B. cereus metallo-beta-lactamase. Llarrull LI; Tioni MF; Vila AJ J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306 [TBL] [Abstract][Full Text] [Related]
10. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Hernandez Valladares M; Felici A; Weber G; Adolph HW; Zeppezauer M; Rossolini GM; Amicosante G; Frère JM; Galleni M Biochemistry; 1997 Sep; 36(38):11534-41. PubMed ID: 9298974 [TBL] [Abstract][Full Text] [Related]
11. Inhibitors of metallo-beta-lactamase generated from beta-lactam antibiotics. Badarau A; Llinás A; Laws AP; Damblon C; Page MI Biochemistry; 2005 Jun; 44(24):8578-89. PubMed ID: 15952764 [TBL] [Abstract][Full Text] [Related]
12. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus. Dal Peraro M; Vila AJ; Carloni P Proteins; 2004 Feb; 54(3):412-23. PubMed ID: 14747990 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. Huntley JJ; Scrofani SD; Osborne MJ; Wright PE; Dyson HJ Biochemistry; 2000 Nov; 39(44):13356-64. PubMed ID: 11063572 [TBL] [Abstract][Full Text] [Related]
14. Evidence for a dinuclear active site in the metallo-beta-lactamase BcII with substoichiometric Co(II). A new model for metal uptake. Llarrull LI; Tioni MF; Kowalski J; Bennett B; Vila AJ J Biol Chem; 2007 Oct; 282(42):30586-95. PubMed ID: 17715135 [TBL] [Abstract][Full Text] [Related]
15. Irreversible inhibition of metallo-beta-lactamase (IMP-1) by 3-(3-mercaptopropionylsulfanyl)propionic acid pentafluorophenyl ester. Kurosaki H; Yamaguchi Y; Higashi T; Soga K; Matsueda S; Yumoto H; Misumi S; Yamagata Y; Arakawa Y; Goto M Angew Chem Int Ed Engl; 2005 Jun; 44(25):3861-4. PubMed ID: 15892033 [No Abstract] [Full Text] [Related]
16. The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase. Bounaga S; Laws AP; Galleni M; Page MI Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):703-11. PubMed ID: 9560295 [TBL] [Abstract][Full Text] [Related]
17. Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid. Karsisiotis AI; Damblon CF; Roberts GC Biochem J; 2013 Dec; 456(3):397-407. PubMed ID: 24059435 [TBL] [Abstract][Full Text] [Related]
18. Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases. Nagano R; Adachi Y; Imamura H; Yamada K; Hashizume T; Morishima H Antimicrob Agents Chemother; 1999 Oct; 43(10):2497-503. PubMed ID: 10508031 [TBL] [Abstract][Full Text] [Related]
19. NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Scrofani SD; Chung J; Huntley JJ; Benkovic SJ; Wright PE; Dyson HJ Biochemistry; 1999 Nov; 38(44):14507-14. PubMed ID: 10545172 [TBL] [Abstract][Full Text] [Related]
20. Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies. Mollard C; Moali C; Papamicael C; Damblon C; Vessilier S; Amicosante G; Schofield CJ; Galleni M; Frere JM; Roberts GC J Biol Chem; 2001 Nov; 276(48):45015-23. PubMed ID: 11564740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]