BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 9418854)

  • 21. Calcium regulation of myogenesis by differential calmodulin inhibition of basic helix-loop-helix transcription factors.
    Hauser J; Saarikettu J; Grundström T
    Mol Biol Cell; 2008 Jun; 19(6):2509-19. PubMed ID: 18353974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors.
    Azmi S; Ozog A; Taneja R
    J Biol Chem; 2004 Dec; 279(50):52643-52. PubMed ID: 15448136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional activation of the myogenin gene by MEF2-mediated recruitment of myf5 is inhibited by adenovirus E1A protein.
    Johanson M; Meents H; Ragge K; Buchberger A; Arnold HH; Sandmöller A
    Biochem Biophys Res Commun; 1999 Nov; 265(1):222-32. PubMed ID: 10548518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD.
    Spiller MP; Kambadur R; Jeanplong F; Thomas M; Martyn JK; Bass JJ; Sharma M
    Mol Cell Biol; 2002 Oct; 22(20):7066-82. PubMed ID: 12242286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The orphan nuclear receptor, COUP-TF II, inhibits myogenesis by post-transcriptional regulation of MyoD function: COUP-TF II directly interacts with p300 and myoD.
    Bailey P; Sartorelli V; Hamamori Y; Muscat GE
    Nucleic Acids Res; 1998 Dec; 26(23):5501-10. PubMed ID: 9826778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription.
    Lluís F; Ballestar E; Suelves M; Esteller M; Muñoz-Cánoves P
    EMBO J; 2005 Mar; 24(5):974-84. PubMed ID: 15719023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of myoD.
    Lemercier C; To RQ; Carrasco RA; Konieczny SF
    EMBO J; 1998 Mar; 17(5):1412-22. PubMed ID: 9482738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel functional co-operation between MyoD, MEF2 and TRalpha1 is sufficient for the induction of GLUT4 gene transcription.
    Santalucía T; Moreno H; Palacín M; Yacoub MH; Brand NJ; Zorzano A
    J Mol Biol; 2001 Nov; 314(2):195-204. PubMed ID: 11718554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis.
    L'honore A; Rana V; Arsic N; Franckhauser C; Lamb NJ; Fernandez A
    Mol Biol Cell; 2007 Jun; 18(6):1992-2001. PubMed ID: 17377068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps.
    Wu Z; Woodring PJ; Bhakta KS; Tamura K; Wen F; Feramisco JR; Karin M; Wang JY; Puri PL
    Mol Cell Biol; 2000 Jun; 20(11):3951-64. PubMed ID: 10805738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation.
    Eckner R; Yao TP; Oldread E; Livingston DM
    Genes Dev; 1996 Oct; 10(19):2478-90. PubMed ID: 8843199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimerization specificity of myogenic helix-loop-helix DNA-binding factors directed by nonconserved hydrophilic residues.
    Shirakata M; Friedman FK; Wei Q; Paterson BM
    Genes Dev; 1993 Dec; 7(12A):2456-70. PubMed ID: 8253390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of myogenic bHLH transcription factors with calcium-binding calmodulin and S100a (alpha alpha) proteins.
    Baudier J; Bergeret E; Bertacchi N; Weintraub H; Gagnon J; Garin J
    Biochemistry; 1995 Jun; 34(24):7834-46. PubMed ID: 7794894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C.
    Molkentin JD; Black BL; Martin JF; Olson EN
    Mol Cell Biol; 1996 Jun; 16(6):2627-36. PubMed ID: 8649370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. E-box- and MEF-2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken MyoD (CMD1) promoter reveal an indirect regulatory pathway.
    Dechesne CA; Wei Q; Eldridge J; Gannoun-Zaki L; Millasseau P; Bougueleret L; Caterina D; Paterson BM
    Mol Cell Biol; 1994 Aug; 14(8):5474-86. PubMed ID: 8035824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of Xenopus MyoD transcription by members of the MEF2 protein family.
    Wong MW; Pisegna M; Lu MF; Leibham D; Perry M
    Dev Biol; 1994 Dec; 166(2):683-95. PubMed ID: 7813786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ras p21Val inhibits myogenesis without altering the DNA binding or transcriptional activities of the myogenic basic helix-loop-helix factors.
    Kong Y; Johnson SE; Taparowsky EJ; Konieczny SF
    Mol Cell Biol; 1995 Oct; 15(10):5205-13. PubMed ID: 7565669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation.
    Chen SL; Dowhan DH; Hosking BM; Muscat GE
    Genes Dev; 2000 May; 14(10):1209-28. PubMed ID: 10817756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Casein kinase II increases the transcriptional activities of MRF4 and MyoD independently of their direct phosphorylation.
    Johnson SE; Wang X; Hardy S; Taparowsky EJ; Konieczny SF
    Mol Cell Biol; 1996 Apr; 16(4):1604-13. PubMed ID: 8657135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation.
    Wilson EM; Tureckova J; Rotwein P
    Mol Biol Cell; 2004 Feb; 15(2):497-505. PubMed ID: 14595115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.