These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9419391)

  • 21. Endogenous inhibition of red blood cell Na,K-ATPase in essential and pregnancy-induced hypertension.
    Ringel R; Pinkas G; Hamlyn J; Mullins L; Hamilton B
    Clin Exp Hypertens A; 1989; 11(4):587-601. PubMed ID: 2551544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of erythrocyte (Na(+)-K+)ATPase activity in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria.
    Mimura M; Makino H; Kanatsuka A; Asai T; Yoshida S
    Horm Metab Res; 1994 Jan; 26(1):33-8. PubMed ID: 8150421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic characterization of Na,K-ATPase inhibition by Eosin.
    Ogan JT; Reifenberger MS; Milanick MA; Gatto C
    Blood Cells Mol Dis; 2007; 38(3):229-37. PubMed ID: 17331759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of diet on total antioxidant status, erythrocyte membrane Na+,K+-ATPase and Mg2+-ATPase activities in patients with classical galactosaemia.
    Schulpis KH; Michelakakis H; Tsakiris T; Tsakiris S
    Clin Nutr; 2005 Feb; 24(1):151-7. PubMed ID: 15681113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in Na,K-adenosine triphosphatase (ATPase) concentration and Na,K-ATPase-dependent adenosine triphosphate turnover in human erythrocytes in diabetes.
    Garner MH
    Metabolism; 1996 Aug; 45(8):927-34. PubMed ID: 8769346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles.
    Suchy FJ; Bucuvalas JC; Goodrich AL; Moyer MS; Blitzer BL
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G665-73. PubMed ID: 3022600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the mechanism of erythrocyte Na+/K+-ATPase inhibition by nitric oxide and peroxynitrite anion.
    Muriel P; Castañeda G; Ortega M; Noël F
    J Appl Toxicol; 2003; 23(4):275-8. PubMed ID: 12884412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of digoxin and gitoxin on the enzymatic activity and kinetic parameters of Na+/K+-ATPase.
    Krstić D; Krinulović K; Spasojević-Tisma V; Joksić G; Momić T; Vasić V
    J Enzyme Inhib Med Chem; 2004 Oct; 19(5):409-15. PubMed ID: 15648655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutathione disulfide-stimulated Mg2+-ATPase of human erythrocyte membranes.
    Kondo T; Kawakami Y; Taniguchi N; Beutler E
    Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7373-7. PubMed ID: 2959960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of captopril on Na-K ATPase and Mg ATPase activities of erythrocyte ghost membranes.
    Santoro FM; de la Riva IJ
    Pharmacol Res Commun; 1985 Apr; 17(4):323-30. PubMed ID: 2989952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of cadmium on transmembrane Na+ and K+ transport systems in human erythrocytes.
    Lijnen P; Staessen J; Fagard R; Amery A
    Br J Ind Med; 1991 Jun; 48(6):392-8. PubMed ID: 1648375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sodium transport across erythrocyte membranes in diabetes mellitus.
    Jennings PE; Wilkins MR; West MJ; Kendall MJ; Barnett AH
    Diabetes Res; 1986 Oct; 3(8):407-10. PubMed ID: 3028693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Various properties of the Na+, K(+)-ATPase and the Mg (2+)-ATPase in erythrocytes from normotensive and hypertensive subjects].
    Canestrari F; Galli F; Gheller G; De Crescentini S; Biagiarelli B
    Boll Soc Ital Biol Sper; 1991 Jul; 67(7):659-66. PubMed ID: 1667978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The activity of erythrocyte membrane enzymes in different stressor exposures].
    Maslova MN
    Fiziol Zh Im I M Sechenova; 1994 Jul; 80(7):76-80. PubMed ID: 7531085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypothesis: low Na/K-ATPase activity in the red cell membrane, a potential marker of the predisposition to diabetic neuropathy.
    Raccah D; Gallice P; Pouget J; Vague P
    Diabete Metab; 1992; 18(3):236-41. PubMed ID: 1327887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a calmodulin-dependent phospholipase A2 that inhibits Na-K-ATPase.
    Okafor MC; Schiebinger RJ; Yingst DR
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1365-72. PubMed ID: 9142863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erythrocyte Na+, K+ and Ca2+, Mg(2+)-ATPase activities in hypertensives on angiotensin-converting enzyme inhibitors.
    Golik A; Weissgarten J; Evans S; Cohen N; Averbukh Z; Zaidenstein R; Cotariu D; Modai D
    Clin Biochem; 1996 Jun; 29(3):249-54. PubMed ID: 8740511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects ex vivo and in vitro of insulin and C-peptide on Na/K adenosine triphosphatase activity in red blood cell membranes of type 1 diabetic patients.
    Djemli-Shipkolye A; Gallice P; Coste T; Jannot MF; Tsimaratos M; Raccah D; Vague P
    Metabolism; 2000 Jul; 49(7):868-72. PubMed ID: 10909997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Erythrocyte membrane ATPases in diabetes: effect of dikanut (Irvingia gabonensis).
    Adamson I; Okafor C; Abu-Bakare A
    Enzyme; 1986; 36(3):212-5. PubMed ID: 3026798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrolysis by acylphosphatase of erythrocyte membrane Na+, K(+)-ATPase phosphorylated intermediate.
    Nediani C; Marchetti E; Nassi P; Liguri G; Ramponi G
    Biochem Int; 1991 Jul; 24(5):959-68. PubMed ID: 1663743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.