These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9419649)

  • 1. Computer-aided diagnosis of breast cancer: artificial neural network approach for optimized merging of mammographic features.
    Lo JY; Baker JA; Kornguth PJ; Floyd CE
    Acad Radiol; 1995 Oct; 2(10):841-50. PubMed ID: 9419649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dominant features on neural network performance in the classification of mammographic lesions.
    Huo Z; Giger ML; Metz CE
    Phys Med Biol; 1999 Oct; 44(10):2579-95. PubMed ID: 10533930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features.
    Lo JY; Baker JA; Kornguth PJ; Iglehart JD; Floyd CE
    Radiology; 1997 Apr; 203(1):159-63. PubMed ID: 9122385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of breast cancer malignancy using an artificial neural network.
    Floyd CE; Lo JY; Yun AJ; Sullivan DC; Kornguth PJ
    Cancer; 1994 Dec; 74(11):2944-8. PubMed ID: 7954258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural network: improving the quality of breast biopsy recommendations.
    Baker JA; Kornguth PJ; Lo JY; Floyd CE
    Radiology; 1996 Jan; 198(1):131-5. PubMed ID: 8539365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Breast Cancer Risk with an Artificial Neural Network.
    Sepandi M; Taghdir M; Rezaianzadeh A; Rahimikazerooni S
    Asian Pac J Cancer Prev; 2018 Apr; 19(4):1017-1019. PubMed ID: 29693975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between computer-aided diagnosis of breast masses and that of calcifications.
    Markey MK; Lo JY; Floyd CE
    Radiology; 2002 May; 223(2):489-93. PubMed ID: 11997558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks.
    Lo JY; Baker JA; Kornguth PJ; Floyd CE
    Acad Radiol; 1999 Jan; 6(1):10-5. PubMed ID: 9891147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces.
    Chan HP; Sahiner B; Lam KL; Petrick N; Helvie MA; Goodsitt MM; Adler DD
    Med Phys; 1998 Oct; 25(10):2007-19. PubMed ID: 9800710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving breast cancer diagnosis with computer-aided diagnosis.
    Jiang Y; Nishikawa RM; Schmidt RA; Metz CE; Giger ML; Doi K
    Acad Radiol; 1999 Jan; 6(1):22-33. PubMed ID: 9891149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automatic method for the identification and interpretation of clustered microcalcifications in mammograms.
    Schmidt F; Sorantin E; Szepesvàri C; Graif E; Becker M; Mayer H; Hartwagner K
    Phys Med Biol; 1999 May; 44(5):1231-43. PubMed ID: 10368015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided diagnosis of mammographic microcalcification clusters.
    Kallergi M
    Med Phys; 2004 Feb; 31(2):314-26. PubMed ID: 15000617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty in the output of artificial neural networks.
    Jiang Y
    IEEE Trans Med Imaging; 2003 Jul; 22(7):913-21. PubMed ID: 12906245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: an ROC study.
    Chan HP; Sahiner B; Helvie MA; Petrick N; Roubidoux MA; Wilson TE; Adler DD; Paramagul C; Newman JS; Sanjay-Gopal S
    Radiology; 1999 Sep; 212(3):817-27. PubMed ID: 10478252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an artificial neural network to high-resolution CT: usefulness in differential diagnosis of diffuse lung disease.
    Fukushima A; Ashizawa K; Yamaguchi T; Matsuyama N; Hayashi H; Kida I; Imafuku Y; Egawa A; Kimura S; Nagaoki K; Honda S; Katsuragawa S; Doi K; Hayashi K
    AJR Am J Roentgenol; 2004 Aug; 183(2):297-305. PubMed ID: 15269016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolving artificial neural networks for screening features from mammograms.
    Fogel DB; Wasson EC; Boughton EM; Porto VW
    Artif Intell Med; 1998 Nov; 14(3):317-26. PubMed ID: 9821520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network.
    Chan HP; Sahiner B; Petrick N; Helvie MA; Lam KL; Adler DD; Goodsitt MM
    Phys Med Biol; 1997 Mar; 42(3):549-67. PubMed ID: 9080535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography.
    Horsch K; Giger ML; Vyborny CJ; Venta LA
    Acad Radiol; 2004 Mar; 11(3):272-80. PubMed ID: 15035517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon.
    Baker JA; Kornguth PJ; Lo JY; Williford ME; Floyd CE
    Radiology; 1995 Sep; 196(3):817-22. PubMed ID: 7644649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of common large sellar-suprasellar masses effect of artificial neural network on radiologists' diagnosis performance.
    Kitajima M; Hirai T; Katsuragawa S; Okuda T; Fukuoka H; Sasao A; Akter M; Awai K; Nakayama Y; Ikeda R; Yamashita Y; Yano S; Kuratsu J; Doi K
    Acad Radiol; 2009 Mar; 16(3):313-20. PubMed ID: 19201360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.