These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9420010)

  • 1. Neutral detergent fiber disappearance and gas and volatile fatty acid production during the in vitro fermentation of six forages.
    Doane PH; Schofield P; Pell AN
    J Anim Sci; 1997 Dec; 75(12):3342-52. PubMed ID: 9420010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of maturity on digestion kinetics of water-soluble and water-insoluble fractions of alfalfa and brome hay.
    Stefanon B; Pell AN; Schofield P
    J Anim Sci; 1996 May; 74(5):1104-15. PubMed ID: 8726744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique interrelationships between fiber composition, water-soluble carbohydrates, and in vitro gas production for fall-grown oat forages.
    Coblentz WK; Nellis SE; Hoffman PC; Hall MB; Weimer PJ; Esser NM; Bertram MG
    J Dairy Sci; 2013; 96(11):7195-7209. PubMed ID: 24011950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in ruminal fermentation and protein degradation in growing Holstein heifers from 80 to 250 kg fed high-concentrate diets with different forage-to-concentrate ratios.
    Rotger A; Ferret A; Calsamiglia S; Manteca X
    J Anim Sci; 2005 Jul; 83(7):1616-24. PubMed ID: 15956470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.
    Foskolos A; Siurana A; Rodriquez-Prado M; Ferret A; Bravo D; Calsamiglia S
    J Dairy Sci; 2015 Aug; 98(8):5482-91. PubMed ID: 26004834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine.
    Woyengo TA; Jha R; Beltranena E; Zijlstra RT
    Animal; 2016 Jun; 10(6):911-8. PubMed ID: 26598244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH.
    Yang WZ; Beauchemin KA
    J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of in situ versus in vitro methods of fiber digestion at 120 and 288 hours to quantify the indigestible neutral detergent fiber fraction of corn silage samples.
    Bender RW; Cook DE; Combs DK
    J Dairy Sci; 2016 Jul; 99(7):5394-5400. PubMed ID: 27157579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake.
    Blümmel M; Becker K
    Br J Nutr; 1997 May; 77(5):757-68. PubMed ID: 9175995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems.
    Castillejos L; Calsamiglia S; Ferret A
    J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient digestibility of diets with different fiber to starch ratios when fed to lactating dairy cows.
    Beckman JL; Weiss WP
    J Dairy Sci; 2005 Mar; 88(3):1015-23. PubMed ID: 15738236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representing interconversions among volatile fatty acids in the Molly cow model.
    Ghimire S; Kohn RA; Gregorini P; White RR; Hanigan MD
    J Dairy Sci; 2017 May; 100(5):3658-3671. PubMed ID: 28259412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of time at suboptimal pH on rumen fermentation in a dual-flow continuous culture system.
    Cerrato-Sánchez M; Calsamiglia S; Ferret A
    J Dairy Sci; 2007 Mar; 90(3):1486-92. PubMed ID: 17297122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-analyses of effects of phytochemicals on digestibility and rumen fermentation characteristics associated with methanogenesis.
    Patra AK
    J Sci Food Agric; 2010 Dec; 90(15):2700-8. PubMed ID: 20740549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test of conditions that affect in vitro production of volatile fatty acids and gases.
    Judd LM; Kohn RA
    J Anim Sci; 2018 Mar; 96(2):694-704. PubMed ID: 29385476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture.
    Hafla AN; Soder KJ; Brito AF; Rubano MD; Dell CJ
    J Dairy Sci; 2014 Dec; 97(12):7856-69. PubMed ID: 25262180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of 13C-labelled short chain fatty acids to measure acetate and propionate production rates in the large intestines. Studies in a pig model.
    Breves G; Schulze E; Sallmann HP; Gädeken D
    Z Gastroenterol; 1993 Mar; 31(3):179-82. PubMed ID: 8386412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system.
    Pitt RE; Van Kessel JS; Fox DG; Pell AN; Barry MC; Van Soest PJ
    J Anim Sci; 1996 Jan; 74(1):226-44. PubMed ID: 8778104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of species-diverse high-alpine forage on in vitro ruminal fermentation when used as donor cow's feed or directly incubated.
    Khiaosa-Ard R; Soliva CR; Kreuzer M; Leiber F
    Animal; 2012 Nov; 6(11):1764-73. PubMed ID: 22717263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of rumen fermentable neutral detergent fiber levels on feed intake and milk production of dairy cows.
    Robinson PH; McQueen RE
    J Dairy Sci; 1992 Feb; 75(2):520-32. PubMed ID: 1313842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.