BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 9420208)

  • 21. The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition.
    Armstrong RT; Kushnir AS; White JM
    J Cell Biol; 2000 Oct; 151(2):425-37. PubMed ID: 11038188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acid-induced changes in thermal stability and fusion activity of influenza hemagglutinin.
    Remeta DP; Krumbiegel M; Minetti CA; Puri A; Ginsburg A; Blumenthal R
    Biochemistry; 2002 Feb; 41(6):2044-54. PubMed ID: 11827552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin.
    Veit M; Kretzschmar E; Kuroda K; Garten W; Schmidt MF; Klenk HD; Rott R
    J Virol; 1991 May; 65(5):2491-500. PubMed ID: 1901916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenza virus 3 or Newcastle disease virus.
    Bagai S; Lamb RA
    J Virol; 1995 Nov; 69(11):6712-9. PubMed ID: 7474081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion.
    Lai AL; Tamm LK
    J Biol Chem; 2010 Nov; 285(48):37467-75. PubMed ID: 20826788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion.
    Jeetendra E; Robison CS; Albritton LM; Whitt MA
    J Virol; 2002 Dec; 76(23):12300-11. PubMed ID: 12414970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin.
    Tatulian SA; Tamm LK
    Biochemistry; 2000 Jan; 39(3):496-507. PubMed ID: 10642174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The final conformation of the complete ectodomain of the HA2 subunit of influenza hemagglutinin can by itself drive low pH-dependent fusion.
    Kim CS; Epand RF; Leikina E; Epand RM; Chernomordik LV
    J Biol Chem; 2011 Apr; 286(15):13226-34. PubMed ID: 21292763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deacylation of influenza virus hemagglutinin does not affect the kinetics of low pH induced membrane fusion.
    Schroth B; Philipp HC; Veit M; Schmidt MF; Herrmann A
    Pflugers Arch; 1996; 431(6 Suppl 2):R257-8. PubMed ID: 8739362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors determining vesicular lipid mixing induced by shortened constructs of influenza hemagglutinin.
    LeDuc DL; Shin YK; Epand RF; Epand RM
    Biochemistry; 2000 Mar; 39(10):2733-9. PubMed ID: 10704225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elongation of the cytoplasmic tail interferes with the fusion activity of influenza virus hemagglutinin.
    Ohuchi M; Fischer C; Ohuchi R; Herwig A; Klenk HD
    J Virol; 1998 May; 72(5):3554-9. PubMed ID: 9557635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemifusion activity of a chimeric influenza virus hemagglutinin with a putative fusion peptide from hepatitis B virus.
    Berting A; Fischer C; Schaefer S; Garten W; Klenk HD; Gerlich WH
    Virus Res; 2000 Jun; 68(1):35-49. PubMed ID: 10930661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A chimeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range.
    Dong J; Roth MG; Hunter E
    J Virol; 1992 Dec; 66(12):7374-82. PubMed ID: 1331528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in the role of the cytoplasmic domain of human parainfluenza virus fusion proteins.
    Yao Q; Compans RW
    J Virol; 1995 Nov; 69(11):7045-53. PubMed ID: 7474124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins.
    Latham T; Galarza JM
    J Virol; 2001 Jul; 75(13):6154-65. PubMed ID: 11390617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterologous transmembrane and cytoplasmic domains direct functional chimeric influenza virus hemagglutinins into the endocytic pathway.
    Roth MG; Doyle C; Sambrook J; Gething MJ
    J Cell Biol; 1986 Apr; 102(4):1271-83. PubMed ID: 3007532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influenza fusion peptides.
    Skehel JJ; Cross K; Steinhauer D; Wiley DC
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):623-6. PubMed ID: 11498040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemifusion between cells expressing hemagglutinin of influenza virus and planar membranes can precede the formation of fusion pores that subsequently fully enlarge.
    Razinkov VI; Melikyan GB; Cohen FS
    Biophys J; 1999 Dec; 77(6):3144-51. PubMed ID: 10585935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the fusion peptide sequence in initial stages of influenza hemagglutinin-induced cell fusion.
    Schoch C; Blumenthal R
    J Biol Chem; 1993 May; 268(13):9267-74. PubMed ID: 8387488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events.
    Blumenthal R; Sarkar DP; Durell S; Howard DE; Morris SJ
    J Cell Biol; 1996 Oct; 135(1):63-71. PubMed ID: 8858163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.