These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9420471)

  • 1. New insights into the genomic organization and origin of the major histocompatibility complex: role of chromosomal (genome) duplication in the emergence of the adaptive immune system.
    Kasahara M
    Hereditas; 1997; 127(1-2):59-65. PubMed ID: 9420471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex.
    Kasahara M; Hayashi M; Tanaka K; Inoko H; Sugaya K; Ikemura T; Ishibashi T
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):9096-101. PubMed ID: 8799160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a 26-kb region linked to the Mhc in zebrafish: genomic organization of the proteasome component beta/transporter associated with antigen processing-2 gene cluster and identification of five new proteasome beta subunit genes.
    Murray BW; Sültmann H; Klein J
    J Immunol; 1999 Sep; 163(5):2657-66. PubMed ID: 10453006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chromosomal duplication model of the major histocompatibility complex.
    Kasahara M
    Immunol Rev; 1999 Feb; 167():17-32. PubMed ID: 10319248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ancestral Major Histocompatibility Complex Organization in Cartilaginous Fish: Reconstructing MHC Origin and Evolution.
    Veríssimo A; Castro LFC; Muñoz-Mérida A; Almeida T; Gaigher A; Neves F; Flajnik MF; Ohta Y
    Mol Biol Evol; 2023 Dec; 40(12):. PubMed ID: 38059517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates.
    Kasahara M; Suzuki T; Pasquier LD
    Trends Immunol; 2004 Feb; 25(2):105-11. PubMed ID: 15102370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution by the birth-and-death process in multigene families of the vertebrate immune system.
    Nei M; Gu X; Sitnikova T
    Proc Natl Acad Sci U S A; 1997 Jul; 94(15):7799-806. PubMed ID: 9223266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of antibody and T-cell receptor V genes--the antibody repertoire might have evolved abruptly.
    Matsunaga T; Törmänen V
    Dev Comp Immunol; 1990; 14(1):1-8. PubMed ID: 2338149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ancestry and cumulative evolution of immune reactions.
    Dzik JM
    Acta Biochim Pol; 2010; 57(4):443-66. PubMed ID: 21046016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of en bloc duplication in vertebrate genomes.
    Abi-Rached L; Gilles A; Shiina T; Pontarotti P; Inoko H
    Nat Genet; 2002 May; 31(1):100-5. PubMed ID: 11967531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.
    Kaufman J
    Annu Rev Immunol; 2018 Apr; 36():383-409. PubMed ID: 29677478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a beta proteasome subunit cluster in the Japanese pufferfish (Fugu rubripes).
    Clark MS; Pontarotti P; Gilles A; Kelly A; Elgar G
    J Immunol; 2000 Oct; 165(8):4446-52. PubMed ID: 11035083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complexity of immune and alloimmune response.
    Petrányi GG
    Transpl Immunol; 2002 Aug; 10(2-3):91-100. PubMed ID: 12216955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal duplication and the emergence of the adaptive immune system.
    Kasahara M; Nakaya J; Satta Y; Takahata N
    Trends Genet; 1997 Mar; 13(3):90-2. PubMed ID: 9066265
    [No Abstract]   [Full Text] [Related]  

  • 15. Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates. Implications for the origin of MHC class I-restricted antigen presentation.
    Kandil E; Namikawa C; Nonaka M; Greenberg AS; Flajnik MF; Ishibashi T; Kasahara M
    J Immunol; 1996 Jun; 156(11):4245-53. PubMed ID: 8666794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different genomic structure of mouse and human Lmp7 genes: characterization of MHC-encoded proteasome genes.
    Meinhardt T; Gräf U; Hämmerling GJ
    Immunogenetics; 1993; 38(5):373-9. PubMed ID: 8344725
    [No Abstract]   [Full Text] [Related]  

  • 17. Evolution of the proteasome components.
    Hughes AL
    Immunogenetics; 1997; 46(2):82-92. PubMed ID: 9162093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of the vertebrate immune system.
    Hughes AL; Yeager M
    Bioessays; 1997 Sep; 19(9):777-86. PubMed ID: 9297968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What do the paralogous regions in the genome tell us about the origin of the adaptive immune system?
    Kasahara M
    Immunol Rev; 1998 Dec; 166():159-75. PubMed ID: 9914911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution.
    McConnell SC; Hernandez KM; Wcisel DJ; Kettleborough RN; Stemple DL; Yoder JA; Andrade J; de Jong JL
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E5014-23. PubMed ID: 27493218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.