These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 9421162)
1. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Vázquez E; Sánchez-Prieto J Eur J Neurosci; 1997 Oct; 9(10):2009-18. PubMed ID: 9421162 [TBL] [Abstract][Full Text] [Related]
2. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Hill MP; Brotchie JM Br J Pharmacol; 1999 May; 127(1):275-83. PubMed ID: 10369483 [TBL] [Abstract][Full Text] [Related]
3. Protein kinase C-mediated suppression of the presynaptic adenosine A1 receptor by a facilitatory metabotropic glutamate receptor. Budd DC; Nicholls DG J Neurochem; 1995 Aug; 65(2):615-21. PubMed ID: 7616216 [TBL] [Abstract][Full Text] [Related]
4. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices. Nooney JM; Lodge D Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613 [TBL] [Abstract][Full Text] [Related]
5. The calcium-dependent [3H]acetylcholine release from synaptosomes of brown trout (Salmo trutta) optic tectum is inhibited by adenosine A1 receptors: effects of enucleation on A1 receptor density and cholinergic markers. Poli A; Di Iorio P; Beraudi A; Notari S; Zaccanti F; Villani L; Traversa U Brain Res; 2001 Feb; 892(1):78-85. PubMed ID: 11172751 [TBL] [Abstract][Full Text] [Related]
6. Co-existence and interaction between facilitatory and inhibitory metabotropic glutamate receptors and the inhibitory adenosine A1 receptor in cerebrocortical nerve terminals. Vázquez E; Budd DC; Herrero I; Nicholls DG; Sánchez-Prieto J Neuropharmacology; 1995 Aug; 34(8):919-27. PubMed ID: 8532173 [TBL] [Abstract][Full Text] [Related]
7. Pharmacological characterization of presynaptic calcium channels using subsecond biochemical measurements of synaptosomal neurosecretion. Turner TJ; Dunlap K Neuropharmacology; 1995 Nov; 34(11):1469-78. PubMed ID: 8606794 [TBL] [Abstract][Full Text] [Related]
8. Increase of the intracellular Ca2+ concentration mediated by transport of glutamate into rat hippocampal synaptosomes: characterization of the activated voltage sensitive Ca2+ channels. Malva JO; Ambrósio AF; Carvalho AP; Carvalho CM Neurochem Int; 1998 Jan; 32(1):7-16. PubMed ID: 9460696 [TBL] [Abstract][Full Text] [Related]
9. Involvement of N- and non-N-type calcium channels in synaptic transmission at corticostriatal synapses. Lovinger DM; Merritt A; Reyes D Neuroscience; 1994 Sep; 62(1):31-40. PubMed ID: 7816209 [TBL] [Abstract][Full Text] [Related]
10. The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation. Huston E; Cullen GP; Burley JR; Dolphin AC Neuroscience; 1995 Sep; 68(2):465-78. PubMed ID: 7477957 [TBL] [Abstract][Full Text] [Related]
11. The development of Ca2+ channel responses and their coupling to exocytosis in cultured cerebellar granule cells. Harrold J; Ritchie J; Nicholls D; Smith W; Bowman D; Pocock J Neuroscience; 1997 Apr; 77(3):683-94. PubMed ID: 9070745 [TBL] [Abstract][Full Text] [Related]
12. Functional interaction between neuropeptide Y receptors and modulation of calcium channels in the rat hippocampus. Silva AP; Carvalho AP; Carvalho CM; Malva JO Neuropharmacology; 2003 Feb; 44(2):282-92. PubMed ID: 12623227 [TBL] [Abstract][Full Text] [Related]
13. Regulation of Ca2+ influx by a protein kinase C activator in chromaffin cells: differential role of P/Q- and L-type Ca2+ channels. Sena CM; Santos RM; Boarder MR; Rosário LM Eur J Pharmacol; 1999 Feb; 366(2-3):281-92. PubMed ID: 10082210 [TBL] [Abstract][Full Text] [Related]
14. Calcium channels coupled to glutamate release identified by omega-Aga-IVA. Turner TJ; Adams ME; Dunlap K Science; 1992 Oct; 258(5080):310-3. PubMed ID: 1357749 [TBL] [Abstract][Full Text] [Related]
15. A toxin from the spider Phoneutria nigriventer that blocks calcium channels coupled to exocytosis. Guatimosim C; Romano-Silva MA; Cruz JS; Beirão PS; Kalapothakis E; Moraes-Santos T; Cordeiro MN; Diniz CR; Gomez MV; Prado MA Br J Pharmacol; 1997 Oct; 122(3):591-7. PubMed ID: 9351520 [TBL] [Abstract][Full Text] [Related]
16. Microsphere embolism-induced changes in presynaptic function of the cerebral cortex in rats. Hayashi H; Takagi N; Kamimoto N; Takeo S Brain Res; 1996 Oct; 737(1-2):64-70. PubMed ID: 8930351 [TBL] [Abstract][Full Text] [Related]
17. Unexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors. Wang SJ; Wang KY; Wang WC; Sihra TS J Neurosci Res; 2006 Nov; 84(7):1528-42. PubMed ID: 17016851 [TBL] [Abstract][Full Text] [Related]
18. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons. Scholz KP; Miller RJ J Neurosci; 1995 Jun; 15(6):4612-7. PubMed ID: 7790927 [TBL] [Abstract][Full Text] [Related]
19. Involvement of P-type calcium channels in high potassium-elicited release of neurotransmitters from rat brain slices. Kimura M; Yamanishi Y; Hanada T; Kagaya T; Kuwada M; Watanabe T; Katayama K; Nishizawa Y Neuroscience; 1995 Jun; 66(3):609-15. PubMed ID: 7644024 [TBL] [Abstract][Full Text] [Related]
20. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors. Martín R; Ladera C; Bartolomé-Martín D; Torres M; Sánchez-Prieto J Neuropharmacology; 2008 Sep; 55(4):464-73. PubMed ID: 18514236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]