These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9421274)

  • 1. Electrophysiological basis for the antiarrhythmic action and positive inotropy of HA-7, a furoquinoline alkaloid derivative, in rat heart.
    Su MJ; Chang GJ; Wu MH; Kuo SC
    Br J Pharmacol; 1997 Dec; 122(7):1285-98. PubMed ID: 9421274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens.
    Chang GJ; Wu MH; Wu YC; Su MJ
    Br J Pharmacol; 1996 Aug; 118(7):1571-83. PubMed ID: 8842417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple cellular electrophysiological effects of a novel antiarrhythmic furoquinoline derivative HA-7 [N-benzyl-7-methoxy-2,3,4,9-tetrahydrofuro[2,3-b]quinoline-3,4-dione] in guinea pig cardiac preparations.
    Chang GJ; Su MJ; Kuo SC; Lin TP; Lee YS
    J Pharmacol Exp Ther; 2006 Jan; 316(1):380-91. PubMed ID: 16174797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac electrophysiologic and antiarrhythmic actions of a pavine alkaloid derivative, O-methyl-neocaryachine, in rat heart.
    Chang GJ; Su MJ; Hung LM; Lee SS
    Br J Pharmacol; 2002 Jun; 136(3):459-71. PubMed ID: 12023949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and electrophysiological effects of a hydroxyphenyl-substituted tetrahydroisoquinoline, SL-1, on isolated rat cardiac tissues.
    Chang GJ; SU MJ; Lee PH; Lee SS; Liu KC
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1651-60. PubMed ID: 8789420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic mechanisms for the antiarrhythmic action of cinnamophilin in rat heart.
    Su MJ; Chen WP; Lo TY; Wu TS
    J Biomed Sci; 1999; 6(6):376-86. PubMed ID: 10545773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological basis for antiarrhythmic efficacy, positive inotropy and low proarrhythmic potential of (-)-caryachine.
    Wu MH; Su MJ; Lee SS; Lin LT; Young ML
    Br J Pharmacol; 1995 Dec; 116(8):3211-8. PubMed ID: 8719798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological mechanisms for the antiarrhythmic action of (-)-caryachine in rat heart.
    Chen L; Su MJ; Wu MH; Lee SS
    J Cardiovasc Pharmacol; 1996 May; 27(5):740-8. PubMed ID: 8859946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and electrophysiological studies on the positive inotropic effect of 2-phenyl-4-oxo-hydroquinoline in rat cardiac tissues.
    Su MJ; Chang GJ; Kuo SC
    Br J Pharmacol; 1993 Sep; 110(1):310-6. PubMed ID: 8106106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro electrophysiological mechanisms for antiarrhythmic efficacy of resveratrol, a red wine antioxidant.
    Chen WP; Su MJ; Hung LM
    Eur J Pharmacol; 2007 Jan; 554(2-3):196-204. PubMed ID: 17107672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thaliporphine, a positive inotropic agent with a negative chronotropic action.
    Su MJ; Chang YM; Chi JF; Lee SS
    Eur J Pharmacol; 1994 Mar; 254(1-2):141-50. PubMed ID: 7515818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells.
    Dukes ID; Cleemann L; Morad M
    J Pharmacol Exp Ther; 1990 Aug; 254(2):560-9. PubMed ID: 2384886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological mechanisms for the antiarrhythmic activities of naloxone on cardiac tissues.
    Hung CF; Wu MH; Tsai CH; Chu SH; Chi JF; Su MJ
    Life Sci; 1998; 63(14):1205-19. PubMed ID: 9771910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azimilide (NE-10064) can prolong or shorten the action potential duration in canine ventricular myocytes: dependence on blockade of K, Ca, and Na channels.
    Yao JA; Tseng GN
    J Cardiovasc Electrophysiol; 1997 Feb; 8(2):184-98. PubMed ID: 9048249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive inotropic action of NMDA receptor antagonist (+)-MK801 in rat heart.
    Huang CF; Su MJ
    J Biomed Sci; 1999; 6(6):387-98. PubMed ID: 10545774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiarrhythmic effect and its underlying ionic mechanism of 17beta-estradiol in cardiac myocytes.
    Nakajima T; Iwasawa K; Oonuma H; Morita T; Goto A; Wang Y; Hazama H
    Br J Pharmacol; 1999 May; 127(2):429-40. PubMed ID: 10385243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 8-oxoberberine on sodium current in rat ventricular and human atrial myocytes.
    Chi JF; Chu SH; Lee CS; Su MJ
    Can J Cardiol; 1997 Nov; 13(11):1103-10. PubMed ID: 9413244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and electrophysiological effects of 8-oxoberberine (JKL1073A) on atrial tissue.
    Chi JF; Chu SH; Lee CS; Chou NK; Su MJ
    Br J Pharmacol; 1996 Jun; 118(3):503-12. PubMed ID: 8762071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological and mechanical effects of caffeic acid phenethyl ester, a novel cardioprotective agent with antiarrhythmic activity, in guinea-pig heart.
    Chang GJ; Chang CJ; Chen WJ; Yeh YH; Lee HY
    Eur J Pharmacol; 2013 Feb; 702(1-3):194-207. PubMed ID: 23396228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological effects of protopine in cardiac myocytes: inhibition of multiple cation channel currents.
    Song LS; Ren GJ; Chen ZL; Chen ZH; Zhou ZN; Cheng H
    Br J Pharmacol; 2000 Mar; 129(5):893-900. PubMed ID: 10696087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.