These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9421454)

  • 1. Quantitative analysis of acute axonal pathology in experimental spinal cord contusion.
    Rosenberg LJ; Wrathall JR
    J Neurotrauma; 1997 Nov; 14(11):823-38. PubMed ID: 9421454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the sodium channel blocker tetrodotoxin on acute white matter pathology after experimental contusive spinal cord injury.
    Rosenberg LJ; Teng YD; Wrathall JR
    J Neurosci; 1999 Jul; 19(14):6122-33. PubMed ID: 10407048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course studies on the effectiveness of tetrodotoxin in reducing consequences of spinal cord contusion.
    Rosenberg LJ; Wrathall JR
    J Neurosci Res; 2001 Oct; 66(2):191-202. PubMed ID: 11592114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A controlled spinal cord contusion for the rhesus macaque monkey.
    Ma Z; Zhang YP; Liu W; Yan G; Li Y; Shields LBE; Walker M; Chen K; Huang W; Kong M; Lu Y; Brommer B; Chen X; Xu XM; Shields CB
    Exp Neurol; 2016 May; 279():261-273. PubMed ID: 26875994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal time window of myelotomy in rats with acute traumatic spinal cord injury: a preliminary study.
    Yang DG; Li JJ; Gu R; Yang ML; Zhang X; Du LJ; Sun W; Gao F; Hu AM; Wu YY; He JG; Feng YT; Chu HY
    Spinal Cord; 2013 Sep; 51(9):673-8. PubMed ID: 23752264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma.
    Wrathall JR; Teng YD; Marriott R
    Exp Neurol; 1997 Jun; 145(2 Pt 1):565-73. PubMed ID: 9217092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extent of myelin pathology differs following contusion and transection spinal cord injury.
    Siegenthaler MM; Tu MK; Keirstead HS
    J Neurotrauma; 2007 Oct; 24(10):1631-46. PubMed ID: 17970626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury.
    Anthes DL; Theriault E; Tator CH
    Brain Res; 1995 Dec; 702(1-2):1-16. PubMed ID: 8846063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling.
    Blight AR
    Neuroscience; 1983 Oct; 10(2):521-43. PubMed ID: 6633870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.
    Stirling DP; Cummins K; Mishra M; Teo W; Yong VW; Stys P
    Brain; 2014 Mar; 137(Pt 3):707-23. PubMed ID: 24369381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord.
    Gomes-Leal W; Corkill DJ; Picanço-Diniz CW
    Brain Res; 2005 Dec; 1066(1-2):57-70. PubMed ID: 16325784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local blockade of sodium channels by tetrodotoxin ameliorates tissue loss and long-term functional deficits resulting from experimental spinal cord injury.
    Teng YD; Wrathall JR
    J Neurosci; 1997 Jun; 17(11):4359-66. PubMed ID: 9151752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal and glial responses to a mid-thoracic spinal cord hemisection in the Macaca fascicularis monkey.
    Wu W; Wu W; Zou J; Shi F; Yang S; Liu Y; Lu P; Ma Z; Zhu H; Xu XM
    J Neurotrauma; 2013 May; 30(10):826-39. PubMed ID: 23421822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats.
    Talbott JF; Nout-Lomas YS; Wendland MF; Mukherjee P; Huie JR; Hess CP; Mabray MC; Bresnahan JC; Beattie MS
    J Neurotrauma; 2016 May; 33(10):929-42. PubMed ID: 26483094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous long-term remyelination after traumatic spinal cord injury in rats.
    Salgado-Ceballos H; Guizar-Sahagun G; Feria-Velasco A; Grijalva I; Espitia L; Ibarra A; Madrazo I
    Brain Res; 1998 Jan; 782(1-2):126-35. PubMed ID: 9519256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathological changes in the white matter after spinal contusion injury in the rat.
    Ek CJ; Habgood MD; Dennis R; Dziegielewska KM; Mallard C; Wheaton B; Saunders NR
    PLoS One; 2012; 7(8):e43484. PubMed ID: 22952690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis.
    Bando Y; Nomura T; Bochimoto H; Murakami K; Tanaka T; Watanabe T; Yoshida S
    Neurochem Int; 2015 Feb; 81():16-27. PubMed ID: 25595039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descending vasomotor pathways in humans: correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury.
    Furlan JC; Fehlings MG; Shannon P; Norenberg MD; Krassioukov AV
    J Neurotrauma; 2003 Dec; 20(12):1351-63. PubMed ID: 14748983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.