These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9421723)

  • 21. An easy 'one tube' method to estimate viability of Cryptosporidium oocysts using real-time qPCR.
    Paziewska-Harris A; Schoone G; Schallig HD
    Parasitol Res; 2016 Jul; 115(7):2873-7. PubMed ID: 27095569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Simple Alcohol-based Method of Oocyst Inactivation for Use in the Development of Detection Assays for
    Hagos B; Molestina RE
    Food Waterborne Parasitol; 2022 Jun; 27():e00163. PubMed ID: 35782020
    [No Abstract]   [Full Text] [Related]  

  • 23. Pilot-scale evaluation of UV reactors' efficacy against in vitro infectivity of Cryptosporidium parvum oocysts.
    Entrala E; Garin YJ; Meneceur P; Hayat M; Scherpereel G; Savin C; Féliers C; Derouin F
    FEMS Immunol Med Microbiol; 2007 Dec; 51(3):555-61. PubMed ID: 17941833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Relationship between discontinuous sucrose gradient and viability of Cryptosporidium sp. oocysts].
    Bautista E; Pezzani BC; Cordoba A; De Luca MM; Basualdo JA
    Rev Argent Microbiol; 1999; 31(4):188-92. PubMed ID: 10615681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphological changes and viability of Cryptosporidium parvum sporozoites after excystation in cell-free culture media.
    Matsubayashi M; Ando H; Kimata I; Nakagawa H; Furuya M; Tani H; Sasai K
    Parasitology; 2010 Nov; 137(13):1861-6. PubMed ID: 20800015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of Cryptosporidium oocysts in water: techniques for generating precise recovery data.
    Reynolds DT; Slade RB; Sykes NJ; Jonas A; Fricker CR
    J Appl Microbiol; 1999 Dec; 87(6):804-13. PubMed ID: 10664905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of time and temperature on flow cytometry enumerated live Cryptosporidium parvum oocysts.
    Ware MW; Schaefer FW
    Lett Appl Microbiol; 2005; 41(5):385-9. PubMed ID: 16238640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flow cytometric protocol for detection of Cryptosporidium spp.
    Barbosa JM; Costa-de-Oliveira S; Rodrigues AG; Hanscheid T; Shapiro H; Pina-Vaz C
    Cytometry A; 2008 Jan; 73(1):44-7. PubMed ID: 18067124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protease activity associated with excystation of Cryptosporidium parvum oocysts.
    Forney JR; Yang S; Healey MC
    J Parasitol; 1996 Dec; 82(6):889-92. PubMed ID: 8973395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring.
    Nichols RA; Campbell BM; Smith HV
    Appl Environ Microbiol; 2006 Aug; 72(8):5428-35. PubMed ID: 16885295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructure of Cryptosporidium parvum oocysts and excysting sporozoites as revealed by high resolution scanning electron microscopy.
    Reduker DW; Speer CA; Blixt JA
    J Protozool; 1985 Nov; 32(4):708-11. PubMed ID: 4067883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of the combined influence of environmental factors on viability of cryptosporidium parvum oocysts in water evaluated by fluorogenic vital dyes and excystation techniques.
    Freire-Santos F; Oteiza-López AM; Vergara-Castiblanco CA; Ares-Mazás E
    Vet Parasitol; 2000 May; 89(4):253-9. PubMed ID: 10799838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple method for evaluating Cryptosporidium-specific antibodies used in monitoring environmental water samples.
    Vesey G; Deere D; Weir CJ; Ashbolt N; Williams KL; Veal DA
    Lett Appl Microbiol; 1997 Nov; 25(5):316-20. PubMed ID: 9418064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field-deployable and near-real-time optical microfluidic biosensors for single-oocyst-level detection of Cryptosporidium parvum from field water samples.
    Angus SV; Kwon HJ; Yoon JY
    J Environ Monit; 2012 Dec; 14(12):3295-304. PubMed ID: 23152174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryptosporidium parvum oocysts recovered from water by the membrane filter dissolution method retain their infectivity.
    Graczyk TK; Fayer R; Cranfield MR; Owens R
    J Parasitol; 1997 Feb; 83(1):111-4. PubMed ID: 9057705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of UV-induced thymine dimers in individual Cryptosporidium parvum and Cryptosporidium hominis oocysts by immunofluorescence microscopy.
    Al-Adhami BH; Nichols RA; Kusel JR; O'Grady J; Smith HV
    Appl Environ Microbiol; 2007 Feb; 73(3):947-55. PubMed ID: 17012589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water.
    McGuigan KG; Méndez-Hermida F; Castro-Hermida JA; Ares-Mazás E; Kehoe SC; Boyle M; Sichel C; Fernández-Ibáñez P; Meyer BP; Ramalingham S; Meyer EA
    J Appl Microbiol; 2006 Aug; 101(2):453-63. PubMed ID: 16882154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophoretic and immunoblot analysis of Cryptosporidium oocysts.
    Lumb R; Lanser JA; O'Donoghue PJ
    Immunol Cell Biol; 1988; 66 ( Pt 5-6)():369-76. PubMed ID: 3224992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical and physical factors affecting the excystation of Cryptosporidium parvum oocysts.
    Kato S; Jenkins MB; Ghiorse WC; Bowman DD
    J Parasitol; 2001 Jun; 87(3):575-81. PubMed ID: 11426720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.
    King BJ; Hoefel D; Daminato DP; Fanok S; Monis PT
    J Appl Microbiol; 2008 May; 104(5):1311-23. PubMed ID: 18248370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.