These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9421833)

  • 1. The contribution of N-methyl-D-aspartate receptors to lesion-induced plasticity in the vestibular nucleus.
    Smith PF; Darlington CL
    Prog Neurobiol; 1997 Dec; 53(5):517-31. PubMed ID: 9421833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of brainstem plasticity. The vestibular compensation model.
    Darlington CL; Flohr H; Smith PF
    Mol Neurobiol; 1991; 5(2-4):355-68. PubMed ID: 1668392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of intra-vestibular nucleus injection of the group I metabotropic glutamate receptor antagonist AIDA on vestibular compensation in guinea pigs.
    Gliddon CM; Sansom AJ; Smith PF; Darlington CL
    Exp Brain Res; 2000 Sep; 134(1):74-80. PubMed ID: 11026728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitatory amino acid receptors in normal and abnormal vestibular function.
    Smith PF; de Waele C; Vidal PP; Darlington CL
    Mol Neurobiol; 1991; 5(2-4):369-87. PubMed ID: 1668393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of the intrinsic excitability of vestibular nucleus neurons to recovery from vestibular damage.
    Darlington CL; Dutia MB; Smith PF
    Eur J Neurosci; 2002 Jun; 15(11):1719-27. PubMed ID: 12081651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic systems in the vestibular nucleus and their contribution to vestibular compensation.
    Gliddon CM; Darlington CL; Smith PF
    Prog Neurobiol; 2005 Jan; 75(1):53-81. PubMed ID: 15713530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The recovery of static vestibular function following peripheral vestibular lesions in mammals: the intrinsic mechanism hypothesis.
    Darlington CL; Smith PF
    J Vestib Res; 1996; 6(3):185-201. PubMed ID: 8744526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunocytochemical and stereological analysis of GABA(B) receptor subunit expression in the rat vestibular nucleus following unilateral vestibular deafferentation.
    Zhang R; Ashton J; Horii A; Darlington CL; Smith PF
    Brain Res; 2005 Mar; 1037(1-2):107-13. PubMed ID: 15777758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unilateral vestibular deafferentation-induced changes in calcium signaling-related molecules in the rat vestibular nuclear complex.
    Masumura C; Horii A; Mitani K; Kitahara T; Uno A; Kubo T
    Brain Res; 2007 Mar; 1138():129-35. PubMed ID: 17275794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances.
    Darlington CL; Smith PF
    Prog Neurobiol; 2000 Oct; 62(3):313-25. PubMed ID: 10840152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate receptors contribute to afferent synaptic transmission in the medial vestibular nucleus of young rats.
    Takahashi Y; Tsumoto T; Kubo T
    Brain Res; 1994 Oct; 659(1-2):287-91. PubMed ID: 7820677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA and AMPA receptor subunit protein expression in the rat vestibular nucleus following unilateral labyrinthectomy.
    King J; Zheng Y; Liu P; Darlington CL; Smith PF
    Neuroreport; 2002 Aug; 13(12):1541-5. PubMed ID: 12218702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lesion-induced plasticity in rat vestibular nucleus neurones dependent on glucocorticoid receptor activation.
    Cameron SA; Dutia MB
    J Physiol; 1999 Jul; 518(Pt 1):151-8. PubMed ID: 10373697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations.
    Vibert N; Babalian A; Serafin M; Gasc JP; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 93(2):413-32. PubMed ID: 10465424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synaptic activation of N-methyl-D-aspartate receptors in the rat medial vestibular nucleus.
    Kinney GA; Peterson BW; Slater NT
    J Neurophysiol; 1994 Oct; 72(4):1588-95. PubMed ID: 7823088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative changes in gene expression of glutamate receptor subunits/subtypes in the vestibular nucleus, inferior olive and flocculus before and following unilateral labyrinthectomy in the rat: real-time quantitative PCR method.
    Horii A; Smith PF; Darlington CL
    Exp Brain Res; 2001 Jul; 139(2):188-200. PubMed ID: 11497061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic glucocorticoid receptor expression in the rat vestibular nucleus and hippocampus following unilateral vestibular deafferentation.
    Lindsay L; Liu P; Gliddon C; Zheng Y; Smith PF; Darlington CL
    Exp Brain Res; 2005 Apr; 162(3):309-14. PubMed ID: 15580339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.
    Grassi S; Pettorossi VE
    Prog Neurobiol; 2001 Aug; 64(6):527-53. PubMed ID: 11311461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy.
    Sans N; Sans A; Raymond J
    Eur J Neurosci; 1997 Oct; 9(10):2019-34. PubMed ID: 9421163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of MK801 on Fos expression in the rat brainstem after unilateral labyrinthectomy.
    Kitahara T; Takeda N; Saika T; Kubo T; Kiyama H
    Brain Res; 1995 Nov; 700(1-2):182-90. PubMed ID: 8624709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.