BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 9422272)

  • 21. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.
    Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N
    Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-dimensional analysis of vocal fold vibration in unilaterally atrophied larynges.
    Kobayashi J; Yumoto E; Hyodo M; Gyo K
    Laryngoscope; 2000 Mar; 110(3 Pt 1):440-6. PubMed ID: 10718435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges.
    Kataoka K; Kitajima K
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
    Zhang Z
    J Acoust Soc Am; 2010 Nov; 128(5):EL279-85. PubMed ID: 21110539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic B-mode ultrasound imaging of vocal fold vibration during phonation.
    Tsai CG; Chen JH; Shau YW; Hsiao TY
    Ultrasound Med Biol; 2009 Nov; 35(11):1812-8. PubMed ID: 19716224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of vocal fold epithelium removal on vibration in an excised human larynx model.
    Tse JR; Zhang Z; Long JL
    J Acoust Soc Am; 2015 Jul; 138(1):EL60-4. PubMed ID: 26233062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic glottal pressures in an excised hemilarynx model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):443-54. PubMed ID: 11130103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing phonation threshold flow and pressure by abducting excised larynges.
    Hottinger DG; Tao C; Jiang JJ
    Laryngoscope; 2007 Sep; 117(9):1695-9. PubMed ID: 17762794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal chaos in excised larynx vibrations.
    Zhang Y; Jiang JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035201. PubMed ID: 16241503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new instrument for intraoperative assessment of individual vocal folds.
    Heaton JT; Kobler JB; Hillman RE; Zeitels SM
    Laryngoscope; 2005 Jul; 115(7):1223-9. PubMed ID: 15995511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of irregular vibration in a physical model of the vocal folds.
    Berry DA; Zhang Z; Neubauer J
    J Acoust Soc Am; 2006 Sep; 120(3):EL36-42. PubMed ID: 17004496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rat excised larynx model of vocal fold scar.
    Welham NV; Montequin DW; Tateya I; Tateya T; Choi SH; Bless DM
    J Speech Lang Hear Res; 2009 Aug; 52(4):1008-20. PubMed ID: 19641079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medial surface dynamics of an in vivo canine vocal fold during phonation.
    Döllinger M; Berry DA; Berke GS
    J Acoust Soc Am; 2005 May; 117(5):3174-83. PubMed ID: 15957785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.