These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9422377)

  • 61. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation.
    Abramov AY; Scorziello A; Duchen MR
    J Neurosci; 2007 Jan; 27(5):1129-38. PubMed ID: 17267568
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis.
    Samhan-Arias AK; Martín-Romero FJ; Gutiérrez-Merino C
    Free Radic Biol Med; 2004 Jul; 37(1):48-61. PubMed ID: 15183194
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inhibition of oxidative stress produced by plasma membrane NADH oxidase delays low-potassium-induced apoptosis of cerebellar granule cells.
    Martín-Romero FJ; García-Martín E; Gutiérrez-Merino C
    J Neurochem; 2002 Aug; 82(3):705-15. PubMed ID: 12153494
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NMDA-dependent superoxide production and neurotoxicity.
    Lafon-Cazal M; Pietri S; Culcasi M; Bockaert J
    Nature; 1993 Aug; 364(6437):535-7. PubMed ID: 7687749
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modulation of oxygen-radical-scavenging enzymes by oxidative stress in primary cultures of rat astroglial cells.
    Pinteaux E; Copin JC; Ledig M; Tholey G
    Dev Neurosci; 1996; 18(5-6):397-404. PubMed ID: 8940611
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Different sources of reactive oxygen species contribute to low potassium-induced apoptosis in cerebellar granule cells.
    Bobba A; Atlante A; Petragallo VA; Marra E
    Int J Mol Med; 2008 Jun; 21(6):737-45. PubMed ID: 18506367
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta.
    Mian KB; Martin W
    Br J Pharmacol; 1995 Jul; 115(6):993-1000. PubMed ID: 7582532
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cytosolic Ca2+ movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca2+ channels.
    Az-ma T; Saeki N; Yuge O
    Br J Pharmacol; 1999 Mar; 126(6):1462-70. PubMed ID: 10217541
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Blockade of platelet-mediated relaxation in rat aortic rings exposed to xanthine-xanthine oxidase.
    Yang BC; Khan S; Mehta JL
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2212-9. PubMed ID: 8023984
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hypoxanthine plus xanthine oxidase causes profound natriuresis without affecting renal blood flow autoregulation.
    Racasan S; Turkstra E; Joles JA; Koomans HA; Braam B
    Kidney Int; 2003 Jul; 64(1):226-31. PubMed ID: 12787413
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative identification of superoxide anion as a negative inotropic species.
    Schrier GM; Hess ML
    Am J Physiol; 1988 Jul; 255(1 Pt 2):H138-43. PubMed ID: 2839994
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of transfection with a superoxide dismutase expression plasmid on xanthine/xanthine oxidase-induced cytotoxicity in cultured rat lung cells.
    Komada F; Nishiguchi K; Tanigawara Y; Wu XY; Iwakawa S; Okumura K
    Biol Pharm Bull; 1996 Aug; 19(8):1100-2. PubMed ID: 8874827
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Selective and non-selective apoptosis induction in transformed and non-transformed fibroblasts by exogenous reactive oxygen and nitrogen species.
    Ivanovas B; Zerweck A; Bauer G
    Anticancer Res; 2002; 22(2A):841-56. PubMed ID: 12014661
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nerve growth factor protects against aluminum-mediated cell death.
    Ohyashiki T; Satoh E; Okada M; Takadera T; Sahara M
    Toxicology; 2002 Jul; 176(3):195-207. PubMed ID: 12093616
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hyperoxia and xanthine dehydrogenase/oxidase activities in rat lung and heart.
    Elsayed NM; Tierney DF
    Arch Biochem Biophys; 1989 Sep; 273(2):281-6. PubMed ID: 2549869
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Induced sub-lethal oxidative damage affects osmotic tolerance and cryosurvival of spermatozoa.
    Ertmer F; Oldenhof H; Schütze S; Rohn K; Wolkers WF; Sieme H
    Reprod Fertil Dev; 2017 Sep; 29(9):1739-1750. PubMed ID: 27755962
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Group IIA secretory phospholipase A2 (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons.
    Chiricozzi E; Fernandez-Fernandez S; Nardicchi V; Almeida A; Bolaños JP; Goracci G
    J Neurochem; 2010 Mar; 112(6):1574-83. PubMed ID: 20067579
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction.
    O'Flaherty CM; Beorlegui NB; Beconi MT
    Theriogenology; 1999 Jul; 52(2):289-301. PubMed ID: 10734395
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells.
    Carter WO; Narayanan PK; Robinson JP
    J Leukoc Biol; 1994 Feb; 55(2):253-8. PubMed ID: 8301222
    [TBL] [Abstract][Full Text] [Related]  

  • 80. L-2-chloropropionic acid-induced neurotoxicity is prevented by MK-801: possible role of NMDA receptors in the neuropathology.
    Widdowson PS; Wyatt I; Gyte A; Simpson MG; Lock EA
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):138-45. PubMed ID: 8560467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.