These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9422454)

  • 1. A multisegment computer simulation of normal human gait.
    Gilchrist LA; Winter DA
    IEEE Trans Rehabil Eng; 1997 Dec; 5(4):290-9. PubMed ID: 9422454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-part, viscoelastic foot model for use in gait simulations.
    Gilchrist LA; Winter DA
    J Biomech; 1996 Jun; 29(6):795-8. PubMed ID: 9147977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling initial contact dynamics during ambulation with dynamic simulation.
    Meyer AR; Wang M; Smith PA; Harris GF
    Med Biol Eng Comput; 2007 Apr; 45(4):387-94. PubMed ID: 17268804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constant and variable stiffness and damping of the leg joints in human hopping.
    Rapoport S; Mizrahi J; Kimmel E; Verbitsky O; Isakov E
    J Biomech Eng; 2003 Aug; 125(4):507-14. PubMed ID: 12968575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of the double limb support phase of human gait.
    Ju MS; Mansour JM
    J Biomech Eng; 1988 Aug; 110(3):223-9. PubMed ID: 3172743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.
    Abtahi SMA; Jamshidi N; Ghaziasgar A
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):201-207. PubMed ID: 29465260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-segmental coordination: motor pattern in humans stepping over an obstacle with mechanical ankle joint friction.
    Gueguen N; Charbonneau M; Robert G; Coyle T; Prince F; Mouchnino L
    J Biomech; 2005 Jul; 38(7):1491-500. PubMed ID: 15922760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of muscles on knee flexion during the swing phase of gait.
    Piazza SJ; Delp SL
    J Biomech; 1996 Jun; 29(6):723-33. PubMed ID: 9147969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between overweight due to pregnancy and due to added weight to simulate body mass distribution in pregnancy.
    Aguiar L; Santos-Rocha R; Vieira F; Branco M; Andrade C; Veloso A
    Gait Posture; 2015 Oct; 42(4):511-7. PubMed ID: 26410476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait characteristics when walking with rounded soft sole shoes.
    Demura T; Demura S; Yamaji S; Yamada T; Kitabayashi T
    Foot (Edinb); 2012 Mar; 22(1):18-23. PubMed ID: 22079403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Forward Dynamic Modelling Investigation of Cause-and-Effect Relationships in Single Support Phase of Human Walking.
    McGrath M; Howard D; Baker R
    Comput Math Methods Med; 2015; 2015():383705. PubMed ID: 26175797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ankle/hindfoot arthrodesis in rheumatoid arthritis improves kinematics and kinetics of the knee and hip: a prospective gait analysis study.
    Weiss RJ; Broström E; Stark A; Wick MC; Wretenberg P
    Rheumatology (Oxford); 2007 Jun; 46(6):1024-8. PubMed ID: 17409135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural network representation of electromyography and joint dynamics in human gait.
    Sepulveda F; Wells DM; Vaughan CL
    J Biomech; 1993 Feb; 26(2):101-9. PubMed ID: 8429053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical analysis of rollator walking.
    Alkjaer T; Larsen PK; Pedersen G; Nielsen LH; Simonsen EB
    Biomed Eng Online; 2006 Jan; 5():2. PubMed ID: 16398933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.