These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9422494)

  • 21. [A pump to assist the cardiac insufficiency].
    Rumian S; Tabor A; Woźny Z
    Przegl Lek; 2007; 64 Suppl 4():1-14. PubMed ID: 18543422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pumping and left ventricular unloading capabilities of the ventricular synchronous skeletal-muscle ventricle.
    Geddes LA; Janas W; Hinds M; Cook J
    J Thorac Cardiovasc Surg; 1995 Jun; 109(6):1127-37. PubMed ID: 7776677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linear performance characteristics of latissimus dorsi muscle: potential for cardiac assistance.
    Gustafson KJ; Guilbeau EJ; Sweeney JD
    ASAIO J; 2003; 49(5):572-7. PubMed ID: 14524567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delayed stimulation of the latissimus dorsi may result in disuse atrophy.
    You JM; Landymore RW; Fris J
    Ann Thorac Surg; 1997 Aug; 64(2):404-8; discussion 408-9. PubMed ID: 9262584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force and histochemical changes in rabbit pectoral muscle induced by chronic electrical stimulation for use in cardiac assistance.
    Takahashi M; Miyamura H; Eguchi S; Homma S
    Thorac Cardiovasc Surg; 1993 Dec; 41(6):344-8. PubMed ID: 8128462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diabetes-induced alterations in latissimus dorsi muscle properties impair effectiveness of dynamic cardiomyoplasty in rats.
    De Angelis K; Senna S; Irigoyen MC; Cestari IA
    Artif Organs; 2004 Apr; 28(4):326-31. PubMed ID: 15084190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic cardiomyoplasty using artificial muscle.
    Suzuki Y; Daitoku K; Minakawa M; Fukui K; Fukuda I
    J Artif Organs; 2008; 11(3):160-2. PubMed ID: 18836878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applicability of the latissimus dorsi muscle in situ as a biomechanical energy source.
    Mizuhara H; Koshiji T; Nishimura K; Nomoto S; Matsuda K; Tsutsui N; Kanda K; Ban T
    ASAIO J; 1995; 41(3):M495-9. PubMed ID: 8573854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skeletal muscle ventricles as a potential right heart assist or substitute.
    Anderson WA; Andersen JS; Bridges CR; Hammond RL; DiMeo F; Frisch EE; Salmons S; Stephenson LW
    ASAIO Trans; 1988; 34(3):241-6. PubMed ID: 3196514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Right latissimus dorsi cardiomyoplasty improves left ventricular function by increasing peak systolic elastance (Emax).
    Aklog L; Murphy MP; Chen FY; Smith WJ; Laurence RG; Appleyard RF; Cohn LH
    Circulation; 1994 Nov; 90(5 Pt 2):II112-9. PubMed ID: 7955236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical properties of the latissimus dorsi muscle after cyclic training.
    Askew GN; Cox VM; Altringham JD; Goldspink DF
    J Appl Physiol (1985); 2002 Aug; 93(2):649-59. PubMed ID: 12133876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiac supporting device using artificial rubber muscle: preliminary study to active dynamic cardiomyoplasty.
    Saito Y; Suzuki Y; Goto T; Daitoku K; Minakawa M; Fukuda I
    J Artif Organs; 2015 Dec; 18(4):377-81. PubMed ID: 26253252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Latissimus dorsi dynamic cardiomyoplasty of the right ventricle. Potential for use as a partial myocardial substitute.
    Soberman MS; Wornom IL; Justicz AG; Coleman JJ; Austin GE; Alazraki NP; Sink JD
    J Thorac Cardiovasc Surg; 1990 May; 99(5):817-27. PubMed ID: 2329819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of the external work of the native heart from the dynamic H-Q curves of the rotary blood pumps during left heart bypass.
    Yokoyama Y; Kawaguchi O; Kitao T; Kimura T; Steinseifer U; Takatani S
    Artif Organs; 2010 Sep; 34(9):766-77. PubMed ID: 20883395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiomyoplasty: hemodynamic benefit to normal and depressed canine left ventricular function.
    Chiang BB; Ali AT; Unger LS; Slater AD; Santamore WP
    ASAIO J; 1997; 43(5):M786-90. PubMed ID: 9360154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skeletal muscle ventricles: improved performance at physiologic preloads.
    Bridges CR; Brown WE; Hammond RL; Anderson DR; Anderson WA; Dimeo F; Stephenson LW
    Surgery; 1989 Aug; 106(2):275-81; discussion 282. PubMed ID: 2527419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical advantage of skeletal muscle as a cardiac assist power source.
    Farrar DJ; Reichenbach SH; Hill JD
    ASAIO J; 1995; 41(3):M481-4. PubMed ID: 8573851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preserved skeletal muscle structure with modified electrical stimulation protocol in a cardiomyoplasty patient: a clinico-pathological report.
    Lorusso R; Alfieri O; Carraro U; Schreuder JJ; Wellens HJ
    Eur J Cardiothorac Surg; 1998 Feb; 13(2):213-5. PubMed ID: 9583832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustained skeletal muscle power for cardiac assist devices: implications of metabolic constraints.
    Reichenbach SH; Egrie GD; Marinache SM; Gustafson KJ; Farrar DJ; Hill JD
    ASAIO J; 2001; 47(5):541-7. PubMed ID: 11575834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A ventricular assist device powered by conditioned skeletal muscle.
    Whalen RL; Richards CL; Lim GW; Sherman CW; Norman JC; Bearnson GB; Burns GL; Olsen DB
    Ann Thorac Surg; 1999 Aug; 68(2):780-4. PubMed ID: 10475488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.