BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9422586)

  • 21. Interactions between the Rhodobacter sphaeroides ECF sigma factor, sigma(E), and its anti-sigma factor, ChrR.
    Anthony JR; Newman JD; Donohue TJ
    J Mol Biol; 2004 Aug; 341(2):345-60. PubMed ID: 15276828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase.
    Gomelsky M; Kaplan S
    Microbiology (Reading); 1995 Aug; 141 ( Pt 8)():1805-1819. PubMed ID: 7551045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thioredoxin is essential for Rhodobacter sphaeroides growth by aerobic and anaerobic respiration.
    Pasternak C; Assemat K; Clément-Métral JD; Klug G
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():83-91. PubMed ID: 9025281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo.
    Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T
    Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32.
    Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B
    J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor.
    Morita MT; Tanaka Y; Kodama TS; Kyogoku Y; Yanagi H; Yura T
    Genes Dev; 1999 Mar; 13(6):655-65. PubMed ID: 10090722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Kaplan S
    J Bacteriol; 1997 Mar; 179(6):1951-61. PubMed ID: 9068641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple regions on the Escherichia coli heat shock transcription factor sigma32 determine core RNA polymerase binding specificity.
    Joo DM; Nolte A; Calendar R; Zhou YN; Jin DJ
    J Bacteriol; 1998 Mar; 180(5):1095-102. PubMed ID: 9495746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli.
    Raina S; Missiakas D; Georgopoulos C
    EMBO J; 1995 Mar; 14(5):1043-55. PubMed ID: 7889935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mutant sigma 32 with a small deletion in conserved region 3 of sigma has reduced affinity for core RNA polymerase.
    Zhou YN; Walter WA; Gross CA
    J Bacteriol; 1992 Aug; 174(15):5005-12. PubMed ID: 1629156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria.
    McCarty JS; Rüdiger S; Schönfeld HJ; Schneider-Mergener J; Nakahigashi K; Yura T; Bukau B
    J Mol Biol; 1996 Mar; 256(5):829-37. PubMed ID: 8601834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: transcriptome flexibility at diverse growth modes.
    Pappas CT; Sram J; Moskvin OV; Ivanov PS; Mackenzie RC; Choudhary M; Land ML; Larimer FW; Kaplan S; Gomelsky M
    J Bacteriol; 2004 Jul; 186(14):4748-58. PubMed ID: 15231807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhizobium meliloti suhR suppresses the phenotype of an Escherichia coli RNA polymerase sigma 32 mutant.
    Bent AF; Signer ER
    J Bacteriol; 1990 Jul; 172(7):3559-68. PubMed ID: 2113906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli.
    Tomoyasu T; Ogura T; Tatsuta T; Bukau B
    Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli.
    Nagai H; Yuzawa H; Yura T
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10515-9. PubMed ID: 1961716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis of Escherichia coli heat shock transcription factor sigma 32 reveals similarities with sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition.
    Kourennaia OV; Tsujikawa L; Dehaseth PL
    J Bacteriol; 2005 Oct; 187(19):6762-9. PubMed ID: 16166539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three disparately regulated genes for sigma 32-like transcription factors in Bradyrhizobium japonicum.
    Narberhaus F; Krummenacher P; Fischer HM; Hennecke H
    Mol Microbiol; 1997 Apr; 24(1):93-104. PubMed ID: 9140968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The four different sigma(54) factors of Rhodobacter sphaeroides are not functionally interchangeable.
    Poggio S; Osorio A; Dreyfus G; Camarena L
    Mol Microbiol; 2002 Oct; 46(1):75-85. PubMed ID: 12366832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress.
    Nonaka G; Blankschien M; Herman C; Gross CA; Rhodius VA
    Genes Dev; 2006 Jul; 20(13):1776-89. PubMed ID: 16818608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.