These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 9422748)
1. Replacement of Ala-166 with cysteine in the high affinity rabbit sodium/glucose transporter alters transport kinetics and allows methanethiosulfonate ethylamine to inhibit transporter function. Lo B; Silverman M J Biol Chem; 1998 Jan; 273(2):903-9. PubMed ID: 9422748 [TBL] [Abstract][Full Text] [Related]
2. Cysteine scanning mutagenesis of the segment between putative transmembrane helices IV and V of the high affinity Na+/Glucose cotransporter SGLT1. Evidence that this region participates in the Na+ and voltage dependence of the transporter. Lo B; Silverman M J Biol Chem; 1998 Nov; 273(45):29341-51. PubMed ID: 9792634 [TBL] [Abstract][Full Text] [Related]
3. Evidence for the involvement of Ala 166 in coupling Na(+) to sugar transport through the human Na(+)/glucose cotransporter. Meinild AK; Loo DD; Hirayama BA; Gallardo E; Wright EM Biochemistry; 2001 Oct; 40(39):11897-904. PubMed ID: 11570890 [TBL] [Abstract][Full Text] [Related]
4. Position 170 of Rabbit Na+/glucose cotransporter (rSGLT1) lies in the Na+ pathway; modulation of polarity/charge at this site regulates charge transfer and carrier turnover. Huntley SA; Krofchick D; Silverman M Biophys J; 2004 Jul; 87(1):295-310. PubMed ID: 15240465 [TBL] [Abstract][Full Text] [Related]
5. A glutamine to glutamate mutation at position 170 (Q170E) in the rabbit Na+/glucose cotransporter, rSGLT1, enhances binding affinity for Na+. Huntley SA; Krofchick D; Silverman M Biochemistry; 2006 Apr; 45(14):4653-63. PubMed ID: 16584200 [TBL] [Abstract][Full Text] [Related]
6. Functional studies of the rabbit intestinal Na+/glucose carrier (SGLT1) expressed in COS-7 cells: evaluation of the mutant A166C indicates this region is important for Na+-activation of the carrier. Vayro S; Lo B; Silverman M Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):119-25. PubMed ID: 9576859 [TBL] [Abstract][Full Text] [Related]
7. Transmembrane IV of the high-affinity sodium-glucose cotransporter participates in sugar binding. Liu T; Lo B; Speight P; Silverman M Am J Physiol Cell Physiol; 2008 Jul; 295(1):C64-72. PubMed ID: 18448629 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. Panayotova-Heiermann M; Loo DD; Wright EM J Biol Chem; 1995 Nov; 270(45):27099-105. PubMed ID: 7592962 [TBL] [Abstract][Full Text] [Related]
9. Conformational changes couple Na+ and glucose transport. Loo DD; Hirayama BA; Gallardo EM; Lam JT; Turk E; Wright EM Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7789-94. PubMed ID: 9636229 [TBL] [Abstract][Full Text] [Related]
10. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1. Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524 [TBL] [Abstract][Full Text] [Related]
11. A conformationally sensitive residue on the cytoplasmic surface of serotonin transporter. Androutsellis-Theotokis A; Ghassemi F; Rudnick G J Biol Chem; 2001 Dec; 276(49):45933-8. PubMed ID: 11592963 [TBL] [Abstract][Full Text] [Related]
12. Cysteine 144 in the third transmembrane domain of the creatine transporter is located close to a substrate-binding site. Dodd JR; Christie DL J Biol Chem; 2001 Dec; 276(50):46983-8. PubMed ID: 11598117 [TBL] [Abstract][Full Text] [Related]
13. Transition states of the high-affinity rabbit Na(+)/glucose cotransporter SGLT1 as determined from measurement and analysis of voltage-dependent charge movements. Krofchick D; Huntley SA; Silverman M Am J Physiol Cell Physiol; 2004 Jul; 287(1):C46-54. PubMed ID: 14973149 [TBL] [Abstract][Full Text] [Related]
14. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na(+)/P(i) cotransporter protein. Lambert G; Forster IC; Stange G; Biber J; Murer H J Gen Physiol; 1999 Nov; 114(5):637-52. PubMed ID: 10532962 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the Vibrio parahaemolyticus Na+/Glucose cotransporter. A bacterial member of the sodium/glucose transporter (SGLT) family. Xie Z; Turk E; Wright EM J Biol Chem; 2000 Aug; 275(34):25959-64. PubMed ID: 10852908 [TBL] [Abstract][Full Text] [Related]
16. Sodium/D-glucose cotransporter charge movements involve polar residues. Panayotova-Heiermann M; Loo DD; Lostao MP; Wright EM J Biol Chem; 1994 Aug; 269(33):21016-20. PubMed ID: 8063719 [TBL] [Abstract][Full Text] [Related]
17. Identification of a functionally important conformation-sensitive region of the secretory Na+-K+-2Cl- cotransporter (NKCC1). Dehaye JP; Nagy A; Premkumar A; Turner RJ J Biol Chem; 2003 Apr; 278(14):11811-7. PubMed ID: 12556450 [TBL] [Abstract][Full Text] [Related]
18. The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. Chen JG; Sachpatzidis A; Rudnick G J Biol Chem; 1997 Nov; 272(45):28321-7. PubMed ID: 9353288 [TBL] [Abstract][Full Text] [Related]
19. Investigating the conformational states of the rabbit Na+/glucose cotransporter. Krofchick D; Silverman M Biophys J; 2003 Jun; 84(6):3690-702. PubMed ID: 12770876 [TBL] [Abstract][Full Text] [Related]
20. Cysteine residues and the structure of the rat renal proximal tubular type II sodium phosphate cotransporter (rat NaPi IIa). Lambert G; Forster IC; Biber J; Murer H J Membr Biol; 2000 Jul; 176(2):133-41. PubMed ID: 10926678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]