These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9422763)

  • 1. Matrices of paired substitutions show the effects of tRNA D/T loop sequence on Drosophila RNase P and 3'-tRNase processing.
    Levinger L; Bourne R; Kolla S; Cylin E; Russell K; Wang X; Mohan A
    J Biol Chem; 1998 Jan; 273(2):1015-25. PubMed ID: 9422763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of matrices of paired substitutions in mid-acceptor stem on Drosophila tRNA(His) structure and end-processing.
    Mohan A; Levinger L
    J Mol Biol; 2000 Nov; 303(4):605-16. PubMed ID: 11054295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase P and 3'-tRNase processing matrices in the analysis of Drosophila transfer RNA D/T loop tertiary contacts.
    Levinger L; Greene V; Birk A; Bourne R; Kolla S; Whyte S
    Nucleic Acids Symp Ser; 1995; (33):82-4. PubMed ID: 8643408
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of conserved D/T loop substitutions in the pre-tRNA substrate on tRNase Z catalysis.
    Hopkinson A; Levinger L
    RNA Biol; 2008; 5(2):104-11. PubMed ID: 18421255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 3' end CCA of mature tRNA is an antideterminant for eukaryotic 3'-tRNase.
    Mohan A; Whyte S; Wang X; Nashimoto M; Levinger L
    RNA; 1999 Feb; 5(2):245-56. PubMed ID: 10024176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and structure requirements for Drosophila tRNA 5'- and 3'-end processing.
    Levinger L; Vasisht V; Greene V; Bourne R; Birk A; Kolla S
    J Biol Chem; 1995 Aug; 270(32):18903-9. PubMed ID: 7642547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the D arm and the anticodon arm in tRNA recognition by eubacterial and eukaryotic RNase P enzymes.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    Biochemistry; 1993 Dec; 32(48):13046-53. PubMed ID: 7694652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The making of tRNAs and more - RNase P and tRNase Z.
    Hartmann RK; Gössringer M; Späth B; Fischer S; Marchfelder A
    Prog Mol Biol Transl Sci; 2009; 85():319-68. PubMed ID: 19215776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro hyperprocessing of Drosophila tRNAs by the catalytic RNA of RNase P the cloverleaf structure of tRNA is not always stable?
    Hori Y; Baba H; Ueda R; Tanaka T; Kikuchi Y
    Eur J Biochem; 2000 Aug; 267(15):4781-8. PubMed ID: 10903512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum requirements for substrates of mammalian tRNA 3' processing endoribonuclease.
    Nashimoto M; Tamura M; Kaspar RL
    Biochemistry; 1999 Sep; 38(37):12089-96. PubMed ID: 10508413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct modes of mature and precursor tRNA binding to Escherichia coli RNase P RNA revealed by NAIM analyses.
    Heide C; Busch S; Feltens R; Hartmann RK
    RNA; 2001 Apr; 7(4):553-64. PubMed ID: 11345434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila tRNAs hyperprocessed in vitro by ribonuclease P.
    Hori Y; Hashida S; Koike M; Tanaka T; Kikuchi Y
    Nucleic Acids Symp Ser; 1999; (42):259-60. PubMed ID: 10780478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetics and specificity of cleavage by RNase P is mainly dependent on the structure of the amino acid acceptor stem.
    Kirsebom LA; Svärd SG
    Nucleic Acids Res; 1992 Feb; 20(3):425-32. PubMed ID: 1371349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 3' substrate determinants for the catalytic efficiency of the Bacillus subtilis RNase P holoenzyme suggest autolytic processing of the RNase P RNA in vivo.
    Loria A; Pan T
    RNA; 2000 Oct; 6(10):1413-22. PubMed ID: 11073217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of tRNA bottom half by bacterial ribonuclease P.
    Nagai Y; Ando T; Tanaka T; Kikuchi Y
    Nucleic Acids Res Suppl; 2003; (3):281-2. PubMed ID: 14510490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro hyperprocessing of tRNAs by Bacillus subtilis ribonuclease P RNA.
    Hori Y; Tanaka T; Kikuchi Y
    Nucleic Acids Res Suppl; 2001; (1):209-10. PubMed ID: 12836338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The T loop structure is dispensable for substrate recognition by tRNase ZL.
    Shibata HS; Takaku H; Takagi M; Nashimoto M
    J Biol Chem; 2005 Jun; 280(23):22326-34. PubMed ID: 15824113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase P as hyperprocessing enzyme: a model for formation of a biologically functional tRNA fragment.
    Kikuchi Y
    Mol Biol Rep; 1995-1996; 22(2-3):171-5. PubMed ID: 8901506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the 3'-end of tRNA with ribonuclease P RNA.
    Oh BK; Pace NR
    Nucleic Acids Res; 1994 Oct; 22(20):4087-94. PubMed ID: 7524035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.