These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 9422781)

  • 1. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains.
    Schroeder RJ; Ahmed SN; Zhu Y; London E; Brown DA
    J Biol Chem; 1998 Jan; 273(2):1150-7. PubMed ID: 9422781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of GPI-anchored enzyme in liposome detergent-resistance.
    Morandat S; Bortolato M; Roux B
    J Membr Biol; 2003 Feb; 191(3):215-21. PubMed ID: 12571756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior.
    Schroeder R; London E; Brown D
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12130-4. PubMed ID: 7991596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).
    London E; Brown DA
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):182-95. PubMed ID: 11090825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes.
    Hanada K; Nishijima M; Akamatsu Y; Pagano RE
    J Biol Chem; 1995 Mar; 270(11):6254-60. PubMed ID: 7890763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes.
    Ahmed SN; Brown DA; London E
    Biochemistry; 1997 Sep; 36(36):10944-53. PubMed ID: 9283086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase.
    Parkin ET; Turner AJ; Hooper NM
    Biochem J; 2001 Aug; 358(Pt 1):209-16. PubMed ID: 11485569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An apparent association between glycosylphosphatidylinositol-anchored proteins and a sphingolipid in Tetrahymena mimbres.
    Zhang X; Thompson GA
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):197-206. PubMed ID: 9173882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells.
    Solomon KR; Mallory MA; Finberg RW
    Biochem J; 1998 Sep; 334 ( Pt 2)(Pt 2):325-33. PubMed ID: 9716490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane.
    Ilangumaran S; Hoessli DC
    Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):433-40. PubMed ID: 9761744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting.
    Lipardi C; Nitsch L; Zurzolo C
    Mol Biol Cell; 2000 Feb; 11(2):531-42. PubMed ID: 10679012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles.
    Kahya N; Brown DA; Schwille P
    Biochemistry; 2005 May; 44(20):7479-89. PubMed ID: 15895991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment.
    Mayor S; Maxfield FR
    Mol Biol Cell; 1995 Jul; 6(7):929-44. PubMed ID: 7579703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol-dependent insertion of glycosylphosphatidylinositol-anchored enzyme.
    Morandat S; Bortolato M; Roux B
    Biochim Biophys Acta; 2002 Aug; 1564(2):473-78. PubMed ID: 12175931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review).
    Hooper NM
    Mol Membr Biol; 1999; 16(2):145-56. PubMed ID: 10417979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida.
    Denny PW; Field MC; Smith DF
    FEBS Lett; 2001 Feb; 491(1-2):148-53. PubMed ID: 11226438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and Analysis of Lipid Rafts from Neural Cells and Tissues.
    Grassi S; Giussani P; Mauri L; Prioni S; Prinetti A
    Methods Mol Biol; 2021; 2187():1-25. PubMed ID: 32770498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified cell ELISA to determine the solubilization of cell surface proteins: Applications in GPI-anchored protein purification.
    Bumgarner GW; Zampell JC; Nagarajan S; Poloso NJ; Dorn AS; D'Souza MJ; Selvaraj P
    J Biochem Biophys Methods; 2005 Aug; 64(2):99-109. PubMed ID: 16000225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors determining detergent resistance of erythrocyte membranes.
    Rodi PM; Trucco VM; Gennaro AM
    Biophys Chem; 2008 Jun; 135(1-3):14-8. PubMed ID: 18394774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.