BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 94237)

  • 1. Chloride transport by self-exchange and by KCl salt diffusion in gramicidin-treated red blood cells.
    Cass A; Dalmark M
    Acta Physiol Scand; 1979 Nov; 107(3):193-203. PubMed ID: 94237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between anion exchange and net anion flow across the human red blood cell membrane.
    Knauf PA; Fuhrmann GF; Rothstein S; Rothstein A
    J Gen Physiol; 1977 Mar; 69(3):363-86. PubMed ID: 15047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.
    Hoffmann EK; Simonsen LO; Sjøholm C
    J Physiol; 1979 Nov; 296():61-84. PubMed ID: 529133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage dependence of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS; Bisognano JD; Pratap PR
    J Gen Physiol; 1994 Nov; 104(5):961-83. PubMed ID: 7533207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organotin-mediated exchange diffusion of anions in human red cells.
    Wieth JO; Tosteson MT
    J Gen Physiol; 1979 Jun; 73(6):765-88. PubMed ID: 479814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of gramicidin A and valinomycin of the permeability of mammalian erythrocytes.
    Bielawski J; Kwinto B
    Acta Biochim Pol; 1975; 22(4):269-78. PubMed ID: 56113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate.
    Wieth JO
    J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS
    J Gen Physiol; 1997 Feb; 109(2):201-16. PubMed ID: 9041449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid electrogenic sulfate-chloride exchange mediated by chemically modified band 3 in human erythrocytes.
    Jennings ML
    J Gen Physiol; 1995 Jan; 105(1):21-47. PubMed ID: 7537324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time.
    Gunn RB; Fröhlich O
    J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human erythrocyte anion permeabilities measured under conditions of net charge transfer.
    Hunter MJ
    J Physiol; 1977 Jun; 268(1):35-49. PubMed ID: 874904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion transport in sickle red blood cells.
    Joiner CH; Gunn RB; Fröhlich O
    Pediatr Res; 1990 Dec; 28(6):587-90. PubMed ID: 2284154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkali metal cation transport through the human erythrocyte membrane by the anion exchange mechanism.
    Funder J
    Acta Physiol Scand; 1980 Jan; 108(1):31-7. PubMed ID: 7376905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies on primycin and gramicidin induced cation transport changes in human erythrocytes.
    Blaskó K; Schagina LV; Malev VV; Sugár IP; Györgyi S
    Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):289-98. PubMed ID: 6085854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The permeability of red blood cells to chloride, urea and water.
    Brahm J
    J Exp Biol; 2013 Jun; 216(Pt 12):2238-46. PubMed ID: 23470663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume- and time-dependent activation and inactivation of ion transport pathways.
    Sarkadi B; Mack E; Rothstein A
    J Gen Physiol; 1984 Apr; 83(4):513-27. PubMed ID: 6202825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper effects on ion transport across lamprey erythrocyte membrane: Cl(-)/OH(-) exchange induced by cuprous ions.
    Bogdanova AY; Virkki LV; Gusev GP; Nikinmaa M
    Toxicol Appl Pharmacol; 1999 Sep; 159(3):204-13. PubMed ID: 10486307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume-activated Cl- and K+ conductance pathways.
    Sarkadi B; Mack E; Rothstein A
    J Gen Physiol; 1984 Apr; 83(4):497-512. PubMed ID: 6202824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride transport in human erythrocytes and ghosts: a quantitative comparison.
    Funder J; Wieth JO
    J Physiol; 1976 Nov; 262(3):679-98. PubMed ID: 13204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.