BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 942391)

  • 1. The concentration of glycine by preparations of the yeast Saccharomyces Carlsbergensis depleted of adenosine triphosphate: Effects of proton gradients and uncoupling agents.
    Seaston A; Carr G; Eddy AA
    Biochem J; 1976 Mar; 154(3):669-76. PubMed ID: 942391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis.
    Eddy AA; Nowacki JA
    Biochem J; 1971 May; 122(5):701-11. PubMed ID: 5129266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The concentration of amino acids by yeast cells depleted of adenosine triphosphate.
    Eddy AA; Backen K; Watson G
    Biochem J; 1970 Dec; 120(4):853-8. PubMed ID: 5495157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stoicheiometry of the absorption of protons with phosphate and L-glutamate by yeasts of the genus Saccharomyces.
    Cockburn M; Earnshaw P; Eddy AA
    Biochem J; 1975 Mar; 146(3):705-12. PubMed ID: 238506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interctions between potassium ions and glycine transport in the yeast Saccharomyces carlsbergensis.
    Eddy AA; Indge KJ; Backen K; Nowacki JA
    Biochem J; 1970 Dec; 120(4):845-52. PubMed ID: 5495156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intrinsic as opposed to the apparent stoichiometry of the glycine-proton symport of the yeast Saccharomyces carlsbergensis.
    Eddy AA; Hopkins P
    Biochem J; 1988 Apr; 251(1):115-9. PubMed ID: 2839155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The absorption of protons with specific amino acids and carbohydrates by yeast.
    Seaston A; Inkson C; Eddy AA
    Biochem J; 1973 Aug; 134(4):1031-43. PubMed ID: 4587071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae.
    Ballarin-Denti A; Den Hollander JA; Sanders D; Slayman CW; Slayman CL
    Biochim Biophys Acta; 1984 Nov; 778(1):1-16. PubMed ID: 6093875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide.
    Eddy AA
    Biochem J; 1968 Jun; 108(2):195-206. PubMed ID: 5665884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate.
    Morville M; Reid M; Eddy AA
    Biochem J; 1973 May; 134(1):11-26. PubMed ID: 4723218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hyperpolarizing and depolarizing effects of 2,4-dinitrophenol on Ehrlich cells.
    Johnstone RM
    Biochim Biophys Acta; 1978 Oct; 512(3):550-6. PubMed ID: 30484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expulsion of uracil and thymine from the yeast Saccharomyces cerevisiae: contrasting responses to changes in the proton electrochemical gradient.
    Eddy AA
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():219-229. PubMed ID: 9025296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton and charge circulation through substrate symports in Saccharomyces cerevisiae: non-classical behaviour of the cytosine symport.
    Eddy AA; Hopkins P; Shaw R
    Symp Soc Exp Biol; 1994; 48():123-39. PubMed ID: 7597638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of ATP, polyphosphate and K+ contents in Saccharomyces carlsbergensis during uptake of Mn2+ and glucose.
    Okorokov LA; Lichko LP; Andreeva NA
    Biochem Int; 1983 Apr; 6(4):481-8. PubMed ID: 6679720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The accumulation of amino acids by mouse ascites-tumour cells. Dependence on but lack of equilibrium with the sodium-ion electrochemical gradient.
    Hacking C; Eddy AA
    Biochem J; 1981 Feb; 194(2):415-26. PubMed ID: 7305998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorocytosine causes uncoupled dissipation of the proton gradient and behaves as an imperfect substrate of the yeast cytosine permease.
    Hopkins P; Shaw R; Acik L; Oliver S; Eddy AA
    Yeast; 1992 Dec; 8(12):1053-64. PubMed ID: 1293884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine.
    Eilam Y; Lavi H; Grossowicz N
    J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane gradient of K+ ions as an energy source in the yeast Saccharomyces carlsbergensis.
    Okorokov LA; Andreeva NA; Lichko LP; Valiakhmetov AYa
    Biochem Int; 1983 Apr; 6(4):463-72. PubMed ID: 6679718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of intracellular pH in the regulation of cation exchanges in yeast.
    Ryan JP; Ryan H
    Biochem J; 1972 Jun; 128(1):139-46. PubMed ID: 4563763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.