BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 9424305)

  • 1. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
    Stein EG; Rice LM; Brünger AT
    J Magn Reson; 1997 Jan; 124(1):154-64. PubMed ID: 9424305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks.
    Cierpicki T; Otlewski J
    J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J; Im W; Brooks CL
    J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force.
    Kuszewski J; Clore GM
    J Magn Reson; 2000 Oct; 146(2):249-54. PubMed ID: 11001840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated protein structure determination from NMR spectra.
    López-Méndez B; Güntert P
    J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torsion angle dynamics for NMR structure calculation with the new program DYANA.
    Güntert P; Mumenthaler C; Wüthrich K
    J Mol Biol; 1997 Oct; 273(1):283-98. PubMed ID: 9367762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement.
    Rice LM; Brünger AT
    Proteins; 1994 Aug; 19(4):277-90. PubMed ID: 7984624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic acid folding determined by mesoscale modeling and NMR spectroscopy: solution structure of d(GCGAAAGC).
    Santini GP; Cognet JA; Xu D; Singarapu KK; Hervé du Penhoat C
    J Phys Chem B; 2009 May; 113(19):6881-93. PubMed ID: 19374420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us?
    Zagrovic B; van Gunsteren WF
    Proteins; 2006 Apr; 63(1):210-8. PubMed ID: 16425239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2'-deoxyribonolactone lesion in DNA: refined solution structure determined by nuclear magnetic resonance and molecular modeling.
    Jourdan M; Garcia J; Defrancq E; Kotera M; Lhomme J
    Biochemistry; 1999 Mar; 38(13):3985-95. PubMed ID: 10194310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GENFOLD: a genetic algorithm for folding protein structures using NMR restraints.
    Bayley MJ; Jones G; Willett P; Williamson MP
    Protein Sci; 1998 Feb; 7(2):491-9. PubMed ID: 9521126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of pH.
    Ripoll DR; Vila JA; Scheraga HA
    J Mol Biol; 2004 Jun; 339(4):915-25. PubMed ID: 15165859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure determination and analysis of helix parameters in the DNA decamer d(CATGGCCATG)2 comparison of results from NMR and crystallography.
    Dornberger U; Flemming J; Fritzsche H
    J Mol Biol; 1998 Dec; 284(5):1453-63. PubMed ID: 9878363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the dynamic nature of DNA duplex structure via analysis of nuclear Overhauser effect intensities.
    Tonelli M; James TL
    Biochemistry; 1998 Aug; 37(33):11478-87. PubMed ID: 9708983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the molecular dynamics structure of DNA in solution based on calculated and observed NMR NOESY volumes and dihedral angles from scalar coupling constants.
    Arthanari H; McConnell KJ; Beger R; Young MA; Beveridge DL; Bolton PH
    Biopolymers; 2003 Jan; 68(1):3-15. PubMed ID: 12579576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory.
    von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME
    J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of experimental NMR restraints.
    Nabuurs SB; Spronk CA; Krieger E; Maassen H; Vriend G; Vuister GW
    J Am Chem Soc; 2003 Oct; 125(39):12026-34. PubMed ID: 14505424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.