These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 9425044)
1. Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: synergy results in a somanase. Millard CB; Lockridge O; Broomfield CA Biochemistry; 1998 Jan; 37(1):237-47. PubMed ID: 9425044 [TBL] [Abstract][Full Text] [Related]
2. The pH dependence of dealkylation in soman-inhibited cholinesterases and their mutants: further evidence for a push-pull mechanism. Saxena A; Viragh C; Frazier DS; Kovach IM; Maxwell DM; Lockridge O; Doctor BP Biochemistry; 1998 Oct; 37(43):15086-96. PubMed ID: 9790671 [TBL] [Abstract][Full Text] [Related]
3. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase. Lockridge O; Blong RM; Masson P; Froment MT; Millard CB; Broomfield CA Biochemistry; 1997 Jan; 36(4):786-95. PubMed ID: 9020776 [TBL] [Abstract][Full Text] [Related]
4. A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters. Masson P; Nachon F; Broomfield CA; Lenz DE; Verdier L; Schopfer LM; Lockridge O Chem Biol Interact; 2008 Sep; 175(1-3):273-80. PubMed ID: 18508040 [TBL] [Abstract][Full Text] [Related]
5. Design and expression of organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase. Millard CB; Lockridge O; Broomfield CA Biochemistry; 1995 Dec; 34(49):15925-33. PubMed ID: 8519749 [TBL] [Abstract][Full Text] [Related]
6. The structure of G117H mutant of butyrylcholinesterase: nerve agents scavenger. Amitay M; Shurki A Proteins; 2009 Nov; 77(2):370-7. PubMed ID: 19452557 [TBL] [Abstract][Full Text] [Related]
7. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase. Wang Y; Boeck AT; Duysen EG; Van Keuren M; Saunders TL; Lockridge O Toxicol Appl Pharmacol; 2004 May; 196(3):356-66. PubMed ID: 15094306 [TBL] [Abstract][Full Text] [Related]
8. Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers. Ordentlich A; Barak D; Kronman C; Benschop HP; De Jong LP; Ariel N; Barak R; Segall Y; Velan B; Shafferman A Biochemistry; 1999 Mar; 38(10):3055-66. PubMed ID: 10074358 [TBL] [Abstract][Full Text] [Related]
9. Screening assays for cholinesterases resistant to inhibition by organophosphorus toxicants. Wang Y; Schopfer LM; Duysen EG; Nachon F; Masson P; Lockridge O Anal Biochem; 2004 Jun; 329(1):131-8. PubMed ID: 15136175 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity. Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656 [TBL] [Abstract][Full Text] [Related]
11. Specificity of ethephon as a butyrylcholinesterase inhibitor and phosphorylating agent. Haux JE; Lockridge O; Casida JE Chem Res Toxicol; 2002 Dec; 15(12):1527-33. PubMed ID: 12482234 [TBL] [Abstract][Full Text] [Related]
12. The active site of human paraoxonase (PON1). Josse D; Lockridge O; Xie W; Bartels CF; Schopfer LM; Masson P J Appl Toxicol; 2001 Dec; 21 Suppl 1():S7-11. PubMed ID: 11920913 [TBL] [Abstract][Full Text] [Related]
13. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Trovaslet-Leroy M; Musilova L; Renault F; Brazzolotto X; Misik J; Novotny L; Froment MT; Gillon E; Loiodice M; Verdier L; Masson P; Rochu D; Jun D; Nachon F Toxicol Lett; 2011 Sep; 206(1):14-23. PubMed ID: 21683774 [TBL] [Abstract][Full Text] [Related]
15. Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase. Mazor O; Cohen O; Kronman C; Raveh L; Stein D; Ordentlich A; Shafferman A Mol Pharmacol; 2008 Sep; 74(3):755-63. PubMed ID: 18523134 [TBL] [Abstract][Full Text] [Related]
16. Butyrylcholinesterase and G116H, G116S, G117H, G117N, E197Q and G117H/E197Q mutants: a molecular dynamics study. Vyas S; Beck JM; Xia S; Zhang J; Hadad CM Chem Biol Interact; 2010 Sep; 187(1-3):241-5. PubMed ID: 20399202 [TBL] [Abstract][Full Text] [Related]
17. Aging pathways for organophosphate-inhibited human butyrylcholinesterase, including novel pathways for isomalathion, resolved by mass spectrometry. Li H; Schopfer LM; Nachon F; Froment MT; Masson P; Lockridge O Toxicol Sci; 2007 Nov; 100(1):136-45. PubMed ID: 17698511 [TBL] [Abstract][Full Text] [Related]
18. Why does the G117H mutation considerably improve the activity of human butyrylcholinesterase against sarin? Insights from quantum mechanical/molecular mechanical free energy calculations. Yao Y; Liu J; Zhan CG Biochemistry; 2012 Nov; 51(44):8980-92. PubMed ID: 23092211 [TBL] [Abstract][Full Text] [Related]
19. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. diSioudi B; Grimsley JK; Lai K; Wild JR Biochemistry; 1999 Mar; 38(10):2866-72. PubMed ID: 10074338 [TBL] [Abstract][Full Text] [Related]
20. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Li B; Sedlacek M; Manoharan I; Boopathy R; Duysen EG; Masson P; Lockridge O Biochem Pharmacol; 2005 Nov; 70(11):1673-84. PubMed ID: 16213467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]