These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 9425055)
41. A cell-free yellow lupin extract containing activities of pseudouridine 35 and 55 synthases. Pieńkowska J; Wrzesiński J; Szweykowska-Kulińska Z Acta Biochim Pol; 1998; 45(3):745-54. PubMed ID: 9918501 [TBL] [Abstract][Full Text] [Related]
42. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes. Morin A; Auxilien S; Senger B; Tewari R; Grosjean H RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905 [TBL] [Abstract][Full Text] [Related]
44. Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements. Sibert BS; Patton JR Nucleic Acids Res; 2012 Mar; 40(5):2107-18. PubMed ID: 22102571 [TBL] [Abstract][Full Text] [Related]
45. Structure of the 16S rRNA pseudouridine synthase RsuA bound to uracil and UMP. Sivaraman J; Sauvé V; Larocque R; Stura EA; Schrag JD; Cygler M; Matte A Nat Struct Biol; 2002 May; 9(5):353-8. PubMed ID: 11953756 [TBL] [Abstract][Full Text] [Related]
46. tRNA recognition by tRNA-guanine transglycosylase from Escherichia coli: the role of U33 in U-G-U sequence recognition. Nonekowski ST; Garcia GA RNA; 2001 Oct; 7(10):1432-41. PubMed ID: 11680848 [TBL] [Abstract][Full Text] [Related]
47. Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:Psi55-synthase and RNA-guided RNA:Psi-synthase activities. Muller S; Fourmann JB; Loegler C; Charpentier B; Branlant C Nucleic Acids Res; 2007; 35(16):5610-24. PubMed ID: 17704128 [TBL] [Abstract][Full Text] [Related]
48. Characterisation and enzymatic properties of tRNA(guanine 26, N (2), N (2))-dimethyltransferase (Trm1p) from Pyrococcus furiosus. Constantinesco F; Motorin Y; Grosjean H J Mol Biol; 1999 Aug; 291(2):375-92. PubMed ID: 10438627 [TBL] [Abstract][Full Text] [Related]
49. The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus. Takeda H; Toyooka T; Ikeuchi Y; Yokobori S; Okadome K; Takano F; Oshima T; Suzuki T; Endo Y; Hori H Genes Cells; 2006 Dec; 11(12):1353-65. PubMed ID: 17121543 [TBL] [Abstract][Full Text] [Related]
50. Single nucleotide modulation of uridine to pseudouridine rearrangement in transfer RNA catalyzed by pseudouridine synthase I. Chihade JW; Horne DA J Mol Recognit; 1996; 9(5-6):524-7. PubMed ID: 9174935 [TBL] [Abstract][Full Text] [Related]
51. In vitro methylation of Escherichia coli 16S rRNA by tRNA (m5U54)-methyltransferase. Gu X; Ofengand J; Santi DV Biochemistry; 1994 Mar; 33(8):2255-61. PubMed ID: 8117682 [TBL] [Abstract][Full Text] [Related]
52. Different adaptations of the same peptide motif for tRNA functional contacts by closely homologous tRNA synthetases. Steer BA; Schimmel P Biochemistry; 1999 Apr; 38(16):4965-71. PubMed ID: 10213598 [TBL] [Abstract][Full Text] [Related]
53. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem-loop. Soderberg T; Poulter CD Biochemistry; 2000 May; 39(21):6546-53. PubMed ID: 10828971 [TBL] [Abstract][Full Text] [Related]
54. Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Pan H; Agarwalla S; Moustakas DT; Finer-Moore J; Stroud RM Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12648-53. PubMed ID: 14566049 [TBL] [Abstract][Full Text] [Related]
55. The T-arm of tRNA is a substrate for tRNA (m5U54)-methyltransferase. Gu XR; Santi DV Biochemistry; 1991 Mar; 30(12):2999-3002. PubMed ID: 2007136 [TBL] [Abstract][Full Text] [Related]
56. Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine. Durant PC; Davis DR J Mol Biol; 1999 Jan; 285(1):115-31. PubMed ID: 9878393 [TBL] [Abstract][Full Text] [Related]
57. Effects of C5 protein on Escherichia coli RNase P catalysis with a precursor tRNA(Phe) bearing a single mismatch in the acceptor stem. Park BH; Lee JH; Kim M; Lee Y Biochem Biophys Res Commun; 2000 Feb; 268(1):136-40. PubMed ID: 10652227 [TBL] [Abstract][Full Text] [Related]
59. Pseudouridines and pseudouridine synthases of the ribosome. Ofengand J; Malhotra A; Remme J; Gutgsell NS; Del Campo M; Jean-Charles S; Peil L; Kaya Y Cold Spring Harb Symp Quant Biol; 2001; 66():147-59. PubMed ID: 12762017 [TBL] [Abstract][Full Text] [Related]
60. A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. Raychaudhuri S; Conrad J; Hall BG; Ofengand J RNA; 1998 Nov; 4(11):1407-17. PubMed ID: 9814761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]