BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9425071)

  • 1. Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance.
    Heyse S; Ernst OP; Dienes Z; Hofmann KP; Vogel H
    Biochemistry; 1998 Jan; 37(2):507-22. PubMed ID: 9425071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors.
    Karlsson OP; Löfås S
    Anal Biochem; 2002 Jan; 300(2):132-8. PubMed ID: 11779103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.
    Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G
    Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Raftophilicity of Rhodopsin Photoreceptor in a Patterned Model Membrane.
    Tanimoto Y; Okada K; Hayashi F; Morigaki K
    Biophys J; 2015 Dec; 109(11):2307-16. PubMed ID: 26636942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer.
    Whorton MR; Jastrzebska B; Park PS; Fotiadis D; Engel A; Palczewski K; Sunahara RK
    J Biol Chem; 2008 Feb; 283(7):4387-94. PubMed ID: 18033822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit.
    Ernst OP; Gramse V; Kolbe M; Hofmann KP; Heck M
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10859-64. PubMed ID: 17578920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-dependent G-protein activation in lipidic cubic phase.
    Navarro J; Landau EM; Fahmy K
    Biopolymers; 2002; 67(3):167-77. PubMed ID: 11979595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex.
    Niu SL; Mitchell DC; Litman BJ
    J Biol Chem; 2001 Nov; 276(46):42807-11. PubMed ID: 11544259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding.
    Mitchell DC; Niu SL; Litman BJ
    J Biol Chem; 2001 Nov; 276(46):42801-6. PubMed ID: 11544258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers.
    Tanimoto Y; Yoshimura Y; Hayashi F; Morigaki K
    J Phys Chem B; 2023 Jan; 127(2):520-527. PubMed ID: 36598865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional stability of rhodopsin in a bicelle system: evaluating G protein activation by rhodopsin in bicelles.
    Kaya AI; Iverson TM; Hamm HE
    Methods Mol Biol; 2015; 1271():67-76. PubMed ID: 25697517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy.
    Komolov KE; Aguilà M; Toledo D; Manyosa J; Garriga P; Koch KW
    Anal Bioanal Chem; 2010 Aug; 397(7):2967-76. PubMed ID: 20544180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic and lipid anchor contributions to the interaction of transducin with membranes: mechanistic implications for activation and translocation.
    Kosloff M; Alexov E; Arshavsky VY; Honig B
    J Biol Chem; 2008 Nov; 283(45):31197-207. PubMed ID: 18782760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of rhodopsin with the G-protein, transducin.
    Hargrave PA; Hamm HE; Hofmann KP
    Bioessays; 1993 Jan; 15(1):43-50. PubMed ID: 8466475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations.
    Sgourakis NG; Garcia AE
    J Mol Biol; 2010 Apr; 398(1):161-73. PubMed ID: 20184892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin reconstituted into a planar-supported lipid bilayer retains photoactivity after cross-linking polymerization of lipid monomers.
    Subramaniam V; Alves ID; Salgado GF; Lau PW; Wysocki RJ; Salamon Z; Tollin G; Hruby VJ; Brown MF; Saavedra SS
    J Am Chem Soc; 2005 Apr; 127(15):5320-1. PubMed ID: 15826160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomeric state of rhodopsin within rhodopsin-transducin complex probed with succinylated concanavalin A.
    Jastrzebska B
    Methods Mol Biol; 2015; 1271():221-33. PubMed ID: 25697527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes.
    Heyse S; Vogel H; Sänger M; Sigrist H
    Protein Sci; 1995 Dec; 4(12):2532-44. PubMed ID: 8580844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of surface plasmon resonance spectroscopy to study G-protein coupled receptor signalling.
    Komolov KE; Koch KW
    Methods Mol Biol; 2010; 627():249-60. PubMed ID: 20217627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.