BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9425071)

  • 21. Reconstitution of the Rhodopsin-Transducin Complex into Lipid Nanodiscs.
    Gao Y; Erickson JW; Cerione RA; Ramachandran S
    Methods Mol Biol; 2019; 2009():317-324. PubMed ID: 31152414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function.
    Jastrzebska B; Debinski A; Filipek S; Palczewski K
    Prog Lipid Res; 2011 Jul; 50(3):267-77. PubMed ID: 21435354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study.
    Isele J; Sakmar TP; Siebert F
    Biophys J; 2000 Dec; 79(6):3063-71. PubMed ID: 11106612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance.
    Plant AL; Brigham-Burke M; Petrella EC; O'Shannessy DJ
    Anal Biochem; 1995 Apr; 226(2):342-8. PubMed ID: 7793636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision.
    Dell'Orco D; Koch KW
    Biochem J; 2011 Dec; 440(2):263-71. PubMed ID: 21843151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins.
    Bayburt TH; Leitz AJ; Xie G; Oprian DD; Sligar SG
    J Biol Chem; 2007 May; 282(20):14875-81. PubMed ID: 17395586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system.
    Komolov KE; Senin II; Philippov PP; Koch KW
    Anal Chem; 2006 Feb; 78(4):1228-34. PubMed ID: 16478116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of an activated rhodopsin-transducin complex in nanoscale lipid bilayers.
    D'Antona AM; Xie G; Sligar SG; Oprian DD
    Biochemistry; 2014 Jan; 53(1):127-34. PubMed ID: 24328127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy.
    Tawa K; Morigaki K
    Biophys J; 2005 Oct; 89(4):2750-8. PubMed ID: 16040759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capturing a rhodopsin receptor signalling cascade across a native membrane.
    Chen S; Getter T; Salom D; Wu D; Quetschlich D; Chorev DS; Palczewski K; Robinson CV
    Nature; 2022 Apr; 604(7905):384-390. PubMed ID: 35388214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers.
    Alves ID; Salamon Z; Hruby VJ; Tollin G
    Biochemistry; 2005 Jun; 44(25):9168-78. PubMed ID: 15966741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media.
    Soubias O; Polozov IV; Teague WE; Yeliseev AA; Gawrisch K
    Biochemistry; 2006 Dec; 45(51):15583-90. PubMed ID: 17176079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trans fatty acid derived phospholipids show increased membrane cholesterol and reduced receptor activation as compared to their cis analogs.
    Niu SL; Mitchell DC; Litman BJ
    Biochemistry; 2005 Mar; 44(11):4458-65. PubMed ID: 15766276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.
    Borch J; Torta F; Sligar SG; Roepstorff P
    Anal Chem; 2008 Aug; 80(16):6245-52. PubMed ID: 18616345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concentration effects on reactions in membranes: rhodopsin and transducin.
    Saxton MJ; Owicki JC
    Biochim Biophys Acta; 1989 Feb; 979(1):27-34. PubMed ID: 2917165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell membrane hybrid bilayers containing the G-protein-coupled receptor CCR5.
    Rao NM; Silin V; Ridge KD; Woodward JT; Plant AL
    Anal Biochem; 2002 Aug; 307(1):117-30. PubMed ID: 12137788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The molecular basis of GTP-binding protein interaction with receptors.
    Hamm HE; Rarick H; Mazzoni M; Malinski J; Suh KH
    Biochem Soc Symp; 1990; 56():35-44. PubMed ID: 2256961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F.
    Sheikh SP; Zvyaga TA; Lichtarge O; Sakmar TP; Bourne HR
    Nature; 1996 Sep; 383(6598):347-50. PubMed ID: 8848049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of dodecyl maltoside detergent on rhodopsin stability and function.
    Ramon E; Marron J; del Valle L; Bosch L; Andrés A; Manyosa J; Garriga P
    Vision Res; 2003 Dec; 43(28):3055-61. PubMed ID: 14611941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.