These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mutations in the nucleotide binding domain of the alpha subunits of the F1-ATPase from thermophilic Bacillus PS3 that affect cross-talk between nucleotide binding sites. Grodsky NB; Dou C; Allison WS Biochemistry; 1998 Jan; 37(4):1007-14. PubMed ID: 9454591 [TBL] [Abstract][Full Text] [Related]
3. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Dou C; Fortes PA; Allison WS Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446 [TBL] [Abstract][Full Text] [Related]
4. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase. Nadanaciva S; Weber J; Senior AE Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006 [TBL] [Abstract][Full Text] [Related]
5. Substitution of betaGlu(201) in the alpha(3)beta(3)gamma subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 increases the affinity of catalytic sites for nucleotides. Ren H; Allison WS J Biol Chem; 2000 Apr; 275(14):10057-63. PubMed ID: 10744684 [TBL] [Abstract][Full Text] [Related]
6. Catalytic site nucleotide binding and hydrolysis in F1F0-ATP synthase. Löbau S; Weber J; Senior AE Biochemistry; 1998 Jul; 37(30):10846-53. PubMed ID: 9692975 [TBL] [Abstract][Full Text] [Related]
7. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites. Ye JJ; Du J; Lin ZH Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570 [TBL] [Abstract][Full Text] [Related]
8. ADP-fluoroaluminate complexes are formed cooperatively at two catalytic sites of wild-type and mutant alpha3beta3gamma subcomplexes of the F1-ATPase from the thermophilic Bacillus PS3. Dou C; Grodsky NB; Matsui T; Yoshida M; Allison WS Biochemistry; 1997 Mar; 36(12):3719-27. PubMed ID: 9132025 [TBL] [Abstract][Full Text] [Related]
9. Tryptophan substitutions surrounding the nucleotide in catalytic sites of F1-ATPase. Weber J; Wilke-Mounts S; Hammond ST; Senior AE Biochemistry; 1998 Sep; 37(35):12042-50. PubMed ID: 9724515 [TBL] [Abstract][Full Text] [Related]
10. Mutations within the C-terminus of the gamma subunit of the photosynthetic F1-ATPase activate MgATP hydrolysis and attenuate the stimulatory oxyanion effect. He F; Samra HS; Tucker WC; Mayans DR; Hoang E; Gromet-Elhanan Z; Berrie CL; Richter ML Biochemistry; 2007 Mar; 46(9):2411-8. PubMed ID: 17288458 [TBL] [Abstract][Full Text] [Related]
11. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related]
12. Binding of TNP-ATP and TNP-ADP to the non-catalytic sites of Escherichia coli F1-ATPase. Weber J; Senior AE FEBS Lett; 1997 Jul; 412(1):169-72. PubMed ID: 9257714 [TBL] [Abstract][Full Text] [Related]
13. C-Terminal mutations in the chloroplast ATP synthase gamma subunit impair ATP synthesis and stimulate ATP hydrolysis. He F; Samra HS; Johnson EA; Degner NR; McCarty RE; Richter ML Biochemistry; 2008 Jan; 47(2):836-44. PubMed ID: 18092810 [TBL] [Abstract][Full Text] [Related]
14. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. Weber J; Wilke-Mounts S; Lee RS; Grell E; Senior AE J Biol Chem; 1993 Sep; 268(27):20126-33. PubMed ID: 8376371 [TBL] [Abstract][Full Text] [Related]
15. Mutagenesis of beta-V198 in the F1-ATPase of yeast Saccharomyces cerevisiae and its role in binding nucleotide. Sosa-Peinado A; Mueller DM Arch Biochem Biophys; 1997 Jan; 337(1):27-33. PubMed ID: 8990264 [TBL] [Abstract][Full Text] [Related]
16. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. Erzberger JP; Wilson DM J Mol Biol; 1999 Jul; 290(2):447-57. PubMed ID: 10390343 [TBL] [Abstract][Full Text] [Related]
17. Determination of the partial reactions of rotational catalysis in F1-ATPase. Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014 [TBL] [Abstract][Full Text] [Related]
18. Do ATP4- and Mg2+ bind stepwise to the F1-ATPase of Halobacterium saccharovorum? Schobert B Eur J Biochem; 1998 Jun; 254(2):363-70. PubMed ID: 9660192 [TBL] [Abstract][Full Text] [Related]
19. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
20. The gamma subunit of the Escherichia coli F1-ATPase can be cross-linked near the glycine-rich loop region of a beta subunit when ADP + Mg2+ occupies catalytic sites but not when ATP + Mg2+ is bound. Aggeler R; Cai SX; Keana JF; Koike T; Capaldi RA J Biol Chem; 1993 Oct; 268(28):20831-7. PubMed ID: 8407913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]