BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 9425125)

  • 21. Chimeric liver transcription factors LFB1 (HNF1) containing the acidic activation domain of VP16 act as positive dominant interfering mutants.
    Denecke B; Bartkowski S; Senkel S; Klein-Hitpass L; Ryffel GU
    J Biol Chem; 1993 Aug; 268(24):18076-82. PubMed ID: 8394359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induced alpha helix in the VP16 activation domain upon binding to a human TAF.
    Uesugi M; Nyanguile O; Lu H; Levine AJ; Verdine GL
    Science; 1997 Aug; 277(5330):1310-3. PubMed ID: 9271577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of hepatocyte nuclear factor-3 beta protein domains required for transcriptional activation and nuclear targeting.
    Qian X; Costa RH
    Nucleic Acids Res; 1995 Apr; 23(7):1184-91. PubMed ID: 7739897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional activator-coactivator recognition: nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding.
    Hua QX; Jia WH; Bullock BP; Habener JF; Weiss MA
    Biochemistry; 1998 Apr; 37(17):5858-66. PubMed ID: 9558319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription.
    Missero C; Pirro MT; Simeone S; Pischetola M; Di Lauro R
    J Biol Chem; 2001 Sep; 276(36):33569-75. PubMed ID: 11438542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The glutamine-rich activation domains of human Sp1 do not stimulate transcription in Saccharomyces cerevisiae.
    Ponticelli AS; Pardee TS; Struhl K
    Mol Cell Biol; 1995 Feb; 15(2):983-8. PubMed ID: 7823962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The AD1 transactivation domain of E2A contains a highly conserved helix which is required for its activity in both Saccharomyces cerevisiae and mammalian cells.
    Massari ME; Jennings PA; Murre C
    Mol Cell Biol; 1996 Jan; 16(1):121-9. PubMed ID: 8524288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues.
    Kistanova E; Dell H; Tsantili P; Falvey E; Cladaras C; Hadzopoulou-Cladaras M
    Biochem J; 2001 Jun; 356(Pt 2):635-42. PubMed ID: 11368795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional domains of the heavy metal-responsive transcription regulator MTF-1.
    Radtke F; Georgiev O; Müller HP; Brugnera E; Schaffner W
    Nucleic Acids Res; 1995 Jun; 23(12):2277-86. PubMed ID: 7610056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TAZ interacts with TTF-1 and regulates expression of surfactant protein-C.
    Park KS; Whitsett JA; Di Palma T; Hong JH; Yaffe MB; Zannini M
    J Biol Chem; 2004 Apr; 279(17):17384-90. PubMed ID: 14970209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo.
    Sainz MB; Goff SA; Chandler VL
    Mol Cell Biol; 1997 Jan; 17(1):115-22. PubMed ID: 8972191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of Clara cell secretory protein gene transcription by thyroid transcription factor-1.
    Zhang L; Whitsett JA; Stripp BR
    Biochim Biophys Acta; 1997 Feb; 1350(3):359-67. PubMed ID: 9061032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GATA-6 activates transcription of thyroid transcription factor-1.
    Shaw-White JR; Bruno MD; Whitsett JA
    J Biol Chem; 1999 Jan; 274(5):2658-64. PubMed ID: 9915795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators.
    Hori R; Pyo S; Carey M
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6047-51. PubMed ID: 7597078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping and functional role of phosphorylation sites in the thyroid transcription factor-1 (TTF-1).
    Zannini M; Acebron A; De Felice M; Arnone MI; Martin-Pérez J; Santisteban P; Di Lauro R
    J Biol Chem; 1996 Jan; 271(4):2249-54. PubMed ID: 8567686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains.
    Li R; Yu DS; Tanaka M; Zheng L; Berger SL; Stillman B
    Mol Cell Biol; 1998 Mar; 18(3):1296-302. PubMed ID: 9488444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oct-1 interacts with conserved motifs in the human thyroid transcription factor 1 gene minimal promoter.
    Bingle CD; Gowan S
    Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):669-74. PubMed ID: 8920965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional characterization on the interaction of yeast TFIID subunit TAF1 with TATA-binding protein.
    Mal TK; Masutomi Y; Zheng L; Nakata Y; Ohta H; Nakatani Y; Kokubo T; Ikura M
    J Mol Biol; 2004 Jun; 339(4):681-93. PubMed ID: 15165843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different TBP-associated factors are required for mediating the stimulation of transcription in vitro by the acidic transactivator GAL-VP16 and the two nonacidic activation functions of the estrogen receptor.
    Brou C; Wu J; Ali S; Scheer E; Lang C; Davidson I; Chambon P; Tora L
    Nucleic Acids Res; 1993 Jan; 21(1):5-12. PubMed ID: 8441620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ability to associate with activation domains in vitro is not required for the TATA box-binding protein to support activated transcription in vivo.
    Tansey WP; Herr W
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10550-4. PubMed ID: 7479838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.