These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1067 related articles for article (PubMed ID: 9425193)
1. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. Pape HC; Driesang RB J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193 [TBL] [Abstract][Full Text] [Related]
2. Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala. Pape HC; Paré D; Driesang RB J Neurophysiol; 1998 Jan; 79(1):205-16. PubMed ID: 9425192 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms for signal transformation in lemniscal auditory thalamus. Tennigkeit F; Schwarz DW; Puil E J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860 [TBL] [Abstract][Full Text] [Related]
5. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo. Lang EJ; Paré D J Neurophysiol; 1997 Jan; 77(1):353-63. PubMed ID: 9120576 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. Bal T; McCormick DA J Physiol; 1993 Aug; 468():669-91. PubMed ID: 8254530 [TBL] [Abstract][Full Text] [Related]
7. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. Viana F; Bayliss DA; Berger AJ J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136 [TBL] [Abstract][Full Text] [Related]
8. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. Nedergaard S; Flatman JA; Engberg I J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714 [TBL] [Abstract][Full Text] [Related]
9. Patch-clamp study of the calcium-dependent chloride current in AtT-20 pituitary cells. Korn SJ; Weight FF J Neurophysiol; 1987 Dec; 58(6):1431-51. PubMed ID: 2449518 [TBL] [Abstract][Full Text] [Related]
13. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons. Llinás RR; Alonso A J Neurophysiol; 1992 Oct; 68(4):1307-20. PubMed ID: 1279134 [TBL] [Abstract][Full Text] [Related]
14. Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. Constanti A; Sim JA J Physiol; 1987 Jun; 387():173-94. PubMed ID: 2443678 [TBL] [Abstract][Full Text] [Related]
15. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. Schwindt PC; Spain WJ; Crill WE J Neurophysiol; 1992 Jan; 67(1):216-26. PubMed ID: 1313080 [TBL] [Abstract][Full Text] [Related]
16. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. Nisenbaum ES; Xu ZC; Wilson CJ J Neurophysiol; 1994 Mar; 71(3):1174-89. PubMed ID: 8201411 [TBL] [Abstract][Full Text] [Related]
17. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. White R; Hiley CR Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801 [TBL] [Abstract][Full Text] [Related]
18. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. Klink R; Alonso A J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647 [TBL] [Abstract][Full Text] [Related]
19. Membrane potential oscillations in CA1 hippocampal pyramidal neurons in vitro: intrinsic rhythms and fluctuations entrained by sinusoidal injected current. García-Muñoz A; Barrio LC; Buño W Exp Brain Res; 1993; 97(2):325-33. PubMed ID: 8150052 [TBL] [Abstract][Full Text] [Related]
20. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig. Sánchez D; Ribas J J Physiol; 1991; 440():167-87. PubMed ID: 1804959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]