BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9425246)

  • 1. Fermentation of maize bran, oat bran, and wheat bran by Bacteroides ovatus V975.
    Martin SA; Morrison WH; Akin DE
    Curr Microbiol; 1998 Feb; 36(2):90-5. PubMed ID: 9425246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of fenugreek fiber, psyllium husk, and wheat bran by Bacteroides ovatus V975.
    Al-Khaldi SF; Martin SA; Prakash L
    Curr Microbiol; 1999 Oct; 39(4):231-2. PubMed ID: 10486060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield fermentation of pentoses into lactic acid.
    Iyer PV; Thomas S; Lee YY
    Appl Biochem Biotechnol; 2000; 84-86():665-77. PubMed ID: 10849826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-chain fatty acid production and fiber degradation by human colonic bacteria: effects of substrate and cell wall fractionation procedures.
    Bourquin LD; Titgemeyer EC; Garleb KA; Fahey GC
    J Nutr; 1992 Jul; 122(7):1508-20. PubMed ID: 1320114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model.
    Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K
    J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola.
    Turner KW; Roberton AM
    Appl Environ Microbiol; 1979 Jul; 38(1):7-12. PubMed ID: 485153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
    Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of carbohydrate substrate preferences in eight species of bifidobacteria.
    Degnan BA; Macfarlane GT
    FEMS Microbiol Lett; 1991 Nov; 68(2):151-6. PubMed ID: 1778437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate utilization patterns and substrate preferences in Bacteroides thetaiotaomicron.
    Degnan BA; Macfarlane GT
    Anaerobe; 1995 Feb; 1(1):25-33. PubMed ID: 16887504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1994; 45-46():367-81. PubMed ID: 8010766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus.
    Saha BC; Kennedy GJ
    Lett Appl Microbiol; 2017 Dec; 65(6):527-533. PubMed ID: 28977696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BACTEROIDES ORALIS, PROPOSED NEW SPECIES ISOLATED FROM THE ORAL CAVITY OF MAN.
    LOESCHE WJ; SOCRANSKY SS; GIBBONS RJ
    J Bacteriol; 1964 Nov; 88(5):1329-37. PubMed ID: 14234789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of long generation times on growth of Bacteroides thetaiotaomicron in carbohydrate-induced continuous culture.
    Kotarski SF; Salyers AA
    J Bacteriol; 1981 Jun; 146(3):853-60. PubMed ID: 7240086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains.
    Verhoeven MD; de Valk SC; Daran JG; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30010916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oat bran increases serum acetate of hypercholesterolemic men.
    Bridges SR; Anderson JW; Deakins DA; Dillon DW; Wood CL
    Am J Clin Nutr; 1992 Aug; 56(2):455-9. PubMed ID: 1322034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
    Strobel HJ
    Arch Microbiol; 1993; 159(5):465-71. PubMed ID: 8484709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fermentation of soluble carbohydrates in rumen contents of cows given diets containing a large proportion of flaked maize.
    Sutton JD
    Br J Nutr; 1969 Aug; 23(3):567-83. PubMed ID: 5804415
    [No Abstract]   [Full Text] [Related]  

  • 20. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.